2.4. Системы искусственного интеллекта 2.4.1. Экспертные системы

: Экспертные системы, искусственный интеллект

2.4. Системы искусственного интеллекта 2.4.1. Экспертные системы

УТВЕРЖДАЮ

Зам.директора по УР

ГККП «Текелийский

профессиональный колледж»

_______________М.Б. Ерманова

Поурочный план №____

Предмет:Информатика

Дата: ___________ Группа: _____________

Тема урока: Экспертные системы, искусственный интеллект

Цели:

  • образовательная:обеспечить в ходе урока усвоение правил, понятий;
  • развивающая: создать условия для развития таких аналитических способностей обучающихся, как умение анализировать, сопоставлять, сравнивать , обобщать познавательные объекты, делать выводы;
  • воспитательная: способствовать развитию умения отстаивать свою точку зрения.

Тип урока: урок изучения нового материала.

Методы обучения: словесный.

Межпредметная связь: математика.

Средства обучения: ПК, интерактивная доска, заданий.

Ход урока:

1. Организационный момент 1 мин.

Готовность обучающихся к уроку, отметка отсутвующих.

2. Изложение нового материала 23 мин.

Экспертные системы. В середине семидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название экспертные системы.

Цель исследований по экспертным системам состоит в разработке программ (устройств), которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом.

В большинстве случаев экспертные системы решают трудно формализуемые задачи или задачи, не имеющие алгоритмического решения.

Экспертная система (ЭС) – программно-техническое средство, позволяющее пользователю в диалоговом режиме получать от компьютера консультационную помощь в конкретной предметной области, где сконцентрированы опыт и знания людей-экспертов (специалистов в данной области).

По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие.

В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость. ЭС могут создаваться с использованием одного или нескольких источников знаний.

Основные понятия искусственного интеллекта.

Достаточно трудно дать точное определение, что такое интеллект человека, потому что интеллект – это сплав многих навыков в области обработки и представления информации.

Интеллект ( intelligence ) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека.

С большой степенью достоверности интеллектом можно называть способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.

Искусственный интеллект (ИИ) – совокупность научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.

Искусственный интеллект – одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Системы искусственного интеллекта (СИИ) — это системы, созданные на базе ЭВМ, которые имитируют решение человеком сложных интеллектуальных задач.

Знания: в общем случае знание — проверенный практикой результат познания действительности, верное ее отражение в мышлении человека, обладание опытом и пониманием, которые являются правильными и в субъективном, и в объективном отношении, на основании которых можно построить суждения и выводы, кажущиеся достаточно надежными для того, чтобы рассматриваться как знание. Поэтому в контексте ИТ термин знания – это информация, присутствующая при реализации интеллектуальных функций. Обычно это отклонения, тенденции, шаблоны и зависимости, обнаруженные в информации.

4. Закрепление 15 мин.

Раздать студентам карточки со схемой. Нарисовать схему в тетрадь, написать определения. Объяснить схему устно.

5. Подведение итогов урока

(выставление оценок) 3 мин.

6. Домашнее задание 3 мин.

§2, стр.26 контрольные вопросы и задания (Е.А. Вьюшкова, Н.В. Параскун. Информатика, 2015 г.)

Преподаватель: Болысбаева Г.А.

Источник: https://infourok.ru/ekspertnie-sistemi-iskusstvenniy-intellekt-1696253.html

Экспертные системы в технологии как класс интеллектуальных систем (окончание)

2.4. Системы искусственного интеллекта 2.4.1. Экспертные системы

Одним из наиболее значительных достижений искусственного интеллекта стала разработка мощных компьютерных систем, получивших название “экспертных”, или основанных на “знаниях” систем.

В современном обществе при решении задач управления сложными многопараметрическими и сильносвязанными системами, объектами, производственными и технологическими процессами приходится сталкиваться с решением неформализуемых либо трудноформализуемых задач.

Такие задачи часто возникают в следующих областях: авиация, космос и оборона, нефтеперерабатывающая промышленность и транспортировка нефтепродуктов, химия, энергетика, металлургия, целлюлозно-бумажная промышленность, телекоммуникации и связь, пищевая промышленность, машиностроение, производство цемента, бетона и т. п.

транспорт, медицина и фармацевтическое производство, административное управление, прогнозирование и мониторинг. Наиболее значительными достижениями в этой области стало создание систем, которые ставят диагноз заболевания, предсказывают месторождения полезных ископаемых, помогают в проектировании электронных устройств, машин и механизмов, решают задачи управления реакторами и другие задачи [11, 73].

Итак, под экспертной системой (ЭС) понимают программу, которая использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала.

Осознание полезности систем, которые могут копировать дорогостоящие или редко встречающиеся человеческие знания, привело к широкому внедрению и расцвету этой технологии в 1980-1990-е годы прошлого века. Основу успеха ЭС составили два важных свойства, отмечаемые рядом исследователей [85, 79]:

  • в ЭС знания отделены от данных, и мощность экспертной системы обусловлена в первую очередь мощностью базы знаний и только во вторую очередь — используемыми методами решения задач;
  • решаемые ЭС задачи являются неформализованными или слабоформализованными и используют эвристические, экспериментальные, субъективные знания экспертов в определенной предметной области.

Основными категориями решаемых ЭС задач являются: диагностика, управление (в том числе технологическими процессами), интерпретация, прогнозирование, проектирование, отладка и ремонт, планирование, наблюдение (мониторинг), обучение.

Обобщенная схема ЭС приведена на рис. 6.2, здесь она более подробная, чем в предыдущей лекции. Основу ЭС составляет подсистема логического вывода, которая использует информацию из базы знаний (БЗ), генерирует рекомендации по решению искомой задачи.

Чаще всего для представления знаний в ЭС применяются системы продукций и семантические сети. Допустим, БЗ состоит из фактов и правил (если , то ). Если ЭС определяет, что посылка верна, то правило признается подходящим для данной консультации и запускается в действие.

Запуск правила означает принятие заключения данного правила в качестве составной части процесса консультации.

Обязательными частями любой ЭС являются также модуль приобретения знаний, модуль отображения и объяснения решений. В большинстве случаев реальные ЭС в промышленной эксплуатации работают также на основе баз данных (БД).

Рис. 6.2. Структура экспертной системы

Только одновременная работа со знаниями и большими объемами информации из БД позволяет ЭС получить неординарные результаты, например, поставить сложный диагноз (медицинский или технический), открыть месторождение полезных ископаемых, управлять ядерным реактором в реальном времени.

Важную роль при создании ЭС играют инструментальные средства.

Среди инструментальных средств для создания ЭС наиболее популярны такие языки программирования, как LISP и PROLOG, а также экспертные системы-оболочки (ЭСО): KEE, CENTAUR, G2 и GDA, CLIPS, АТ_ТЕХНОЛОГИЯ, предоставляющие в распоряжение разработчика — инженера по знаниям широкий набор для комбинирования систем представления знаний, языков программирования, объектов и процедур [66, 103].

Рассмотрим различные способы классификации ЭС.

По назначению ЭС делятся на:

  • ЭС общего назначения;
  • специализированные ЭС.

В свою очередь, специализированные ЭС делятся на:

  • проблемно-ориентированные для задач диагностики, проектирования, прогнозирования;
  • предметно-ориентированные для специфических задач, например, контроля ситуаций на атомных электростанциях.

По степени зависимости от внешней среды выделяют:

  • статические ЭС, не зависящие от внешней среды;
  • динамические, учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени. Время реакции в таких системах может задаваться в миллисекундах, и эти системы реализуются, как правило, на языке С++.

По типу использования различают:

  • изолированные ЭС;
  • ЭС на входе/выходе других систем;
  • гибридные ЭС или, иначе говоря, ЭС, интегрированные с базами данных и другими программными продуктами (приложениями).

По сложности решаемых задач различают:

  • простые ЭС — до 1000 простых правил;
  • средние ЭС — от 1000 до 10000 структурированных правил;
  • сложные ЭС — более 10000 структурированных правил.

По стадии создания выделяют:

  • исследовательский образец ЭС, разработанный за 1-2 месяца с минимальной БЗ;
  • демонстрационный образец ЭС, разработанный за 2-4 месяца, например, на языке типа LISP, PROLOG, CLIPS;
  • промышленный образец ЭС, разработанный за 4-8 месяцев, например на языке типа CLIPS с полной БЗ;
  • коммерческий образец ЭС, разработанный за 1,5-2 года, например на языке типа С++, Java с полной БЗ.

Разработка ЭС связана с определенными трудностями, которые необходимо хорошо знать, так же как и способы их преодоления. Рассмотрим подробнее эти проблемы.

  1. Проблема извлечения знаний экспертов. Ни один специалист никогда просто так не раскроет секреты своего профессионального мастерства, свои сокровенные знания в профессиональной области. Он должен быть заинтересован материально или морально, причем хорошо заинтересован. Никто не хочет рубить сук, на котором сидит. Часто такой специалист опасается, что, раскрыв все свои секреты, он будет не нужен компании. Вместо него будет работать экспертная система. Избежать этого поможет выбор высококвалифицированного эксперта, заинтересованного в сотрудничестве.
  2. Проблема формализации знаний экспертов. Эксперты-специалисты в определенной области, как правило, не в состоянии формализовать свои знания. Часто они принимают правильные решения на интуитивном уровне и не могут аргументированно объяснить, почему принято то или иное решение. Иногда эксперты не могут прийти к взаимопониманию (фраза “встретились два геолога, у них было три мнения” — не шутка, а жизненная реальность). В таких ситуациях поможет выбор эксперта, умеющего ясно формулировать свои мысли и легко объяснять другим свои идеи.
  3. Проблема нехватки времени у эксперта. Выбранный для разработки эксперт не может найти достаточно времени для выполнения проекта. Он слишком занят. Он всем нужен. У него есть проблемы. Чтобы избежать этой ситуации, необходимо получить от эксперта, прежде чем начнется проект, согласие тратить на проект время в определенном фиксированном объеме.
  4. Правила, формализованные экспертом, не дают необходимой точности. Этого можно избежать, если решать вместе с экспертом реальные задачи. Не надо придумывать “игрушечных” ситуаций или задач. В условиях задач нужно использовать реальные данные, такие как лабораторные данные, отчеты, дневники и другую информацию, взятую из практических задач. Постарайтесь говорить с экспертом на одном языке, применяя единую терминологию. Эксперт, как правило, легче понимает правила, записанные на языке, близком к естественному, а не на языке типа LISP или PROLOG.
  5. Недостаток ресурсов. В качестве ресурсов выступают персонал (инженеры знаний, разработчики инструментальных средств, эксперты) и средства построения ЭС (средства разработки и средства поддержки). Недостаток благожелательных и грамотных администраторов порождает скептицизм и нетерпение у руководителей. Повышенное внимание в прессе и преувеличения вызвали нереалистические ожидания, которые приводят к разочарованию в отношении экспертных систем. ЭС могут давать не самые лучшие решения на границе их применимости, при работе с противоречивыми знаниями и в рассуждениях на основе здравого смысла. Могут потребоваться значительные усилия, чтобы добиться небольшого увеличения качества работы ЭС. Экспертные системы требуют много времени на разработку. Так, создание системы PUFF для интерпретации функциональных тестов легких потребовало 5 человеко-лет, на разработку системы PROCPECTOR для разведки рудных месторождений ушло 30 человеко-лет, система XCON для расчета конфигурации компьютерных систем на основе VAX 11/780 потребовала 8 человеко-лет. ЭС последних времен разрабатываются более быстрыми темпами за счет развития технологий ЭС, но проблемы остались. Удвоение персонала не сокращает время разработки наполовину, потому что процесс создания ЭС — это процесс со множеством обратных связей. Все это необходимо учитывать при планировании создания ЭС.
  6. Неадекватность инструментальных средств решаемой задаче. Часто определенные типы знаний (например, временные или пространственные) не могут быть легко представлены на одном языке ПЗ, так же как и разные схемы представления (например, фреймы и продукции) не могут быть достаточно эффективно реализованы на одном языке ПЗ. Некоторые задачи могут быть непригодными для решения по технологии ЭС (например, отдельные задачи анализа сцен). Необходим тщательный анализ решаемых задач, чтобы определить пригодность предлагаемых инструментальных средств и сделать правильный выбор.

О других трудностях и ловушках при создании ЭС более подробно можно прочитать в учебнике [21].

Рассмотрим методику формализации экспертных знаний на примере создания экспертных диагностических систем (ЭДС).

Целью создания ЭДС является определение состояния объекта диагностирования (ОД) и имеющихся в нем неисправностей.

Состояниями ОД могут быть: “исправно”, “неисправно”, “работоспособно”. Неисправностями, например, радиоэлектронных ОД являются обрыв связи, замыкание проводников, неправильное функционирование элементов и т. д.

Число неисправностей может быть достаточно велико (несколько тысяч). В ОД может быть одновременно несколько неисправностей. В этом случае говорят, что неисправности кратные.

Вводят следующие определения:

Разные неисправности ОД проявляются во внешней среде информационными параметрами. Совокупность значений информационных параметров определяет “информационный образ” (ИО) неисправности ОД. ИО может быть полным, то есть содержать всю необходимую информацию для постановки диагноза, или, соответственно, неполным. В случае неполного ИО постановка диагноза носит вероятностный характер.

Основой для построения эффективных ЭДС являются знания эксперта для постановки диагноза, записанные в виде информационных образов, и система представления знаний, встраиваемая в информационные системы обеспечения функционирования и контроля ОД, которые интегрируются с соответствующей технической аппаратурой.

Для описания своих знаний эксперт с помощью инженера по знаниям должен выполнить следующее:

  1. Выделить множество всех неисправностей ОД, которые должна различать ЭДС.
  2. Выделить множество информативных (существенных) параметров, значения которых позволяют различить каждую неисправность ОД и поставить диагноз с некоторой вероятностью.
  3. Для выбранных параметров следует выделить информативные значения или информативные диапазоны значений, которые могут быть как количественными, так и качественными. Например, точные количественные значения могут быть записаны так: задержка 25 насек, задержка 30 насек и т. д. Количественный диапазон значений может быть записан так: задержка 25-40 насек, 40-50 насек, 50 насек и выше. Качественный диапазон значений может быть записан так: индикаторная лампа светится ярко, светится слабо, не светится.

В современных ЭДС применяются различные стратегии поиска решения и постановки диагноза, которые позволяют определить необходимые последовательности тестовых процедур. Однако приоритет в ЭС отдается прежде всего знаниям и опыту, а лишь затем логическому выводу.

Для начала совершим краткий экскурс в историю создания ранних и наиболее известных ЭС. В большинстве этих ЭС в качестве СПЗ использовались системы продукций (правила) и прямая цепочка рассуждений.

Медицинская ЭС MYCIN разработана в Стэнфордском университете в середине 1970-х годов для диагностики и лечения инфекционных заболеваний крови. MYCIN в настоящее время применяется для обучения врачей.

ЭС DENDRAL разработана в Стэнфордском университете в середине 1960-х годов для определения топологических структур органических молекул. Система выводит молекулярную структуру химических веществ по данным масс-спектрометрии и ядерного магнитного резонанса.

ЭС PROSPECTOR разработана в Стэнфордском университете в 1974-1983 годах для оценки геологами потенциальной рудоносности района. Система содержит более 1000 правил и реализована на INTERLISP.

Программа сравнивает наблюдения геологов с моделями разного рода залежей руд. Программа вовлекает геолога в диалог для извлечения дополнительной информации.

В 1984 году она точно предсказала существование молибденового месторождения, оцененного в многомиллионную сумму.

Рассмотрим экспертную систему диагностирования (ЭСД) цифровых и цифроаналоговых устройств [108, 96, 44], в которой использовались системы продукций и фреймы, а также прямая и обратная цепочки рассуждений одновременно.

В качестве объекта диагностирования (ОД) в ЭСД могут применяться цифровые устройства (ЦУ), БИС, цифро-аналоговые устройства. На рис. 6.

3 показано, что такая ЭСД работает совместно с автоматизированной системой контроля и диагностирования (АКД), которая подает в динамике воздействия на ОД (десятки, сотни и тысячи воздействий в секунду), анализирует выходные реакции и дает заключение: годен или не годен.

В случае если реакция проверяемого ОД не соответствует эталонным значениям, подключается основанная на знаниях подсистема диагностирования. ЭСД запрашивает значения сигналов в определенных контрольных точках и ведет оператора по схеме ОД, рекомендуя ему произвести измерения в определенных контрольных точках или подтвердить промежуточный диагноз, и в результате приводит его к месту неисправности.

Исходными данными для работы ЭСД являются результаты машинного моделирования ОД на этапе проектирования. Эти результаты моделирования передаются в ЭСД на магнитных носителях в виде тысяч продукционных правил. Движение по контрольным точкам осуществляется на основе модели, записанной в виде сети фреймов для ОД.

Такая ЭСД не была бы интеллектуальной системой, если бы она не накапливала опыт. Она запоминает найденную неисправность для данного типа ОД. В следующий раз при диагностике неисправности ОД этого типа она предлагает проверить сразу же эту неисправность, если реакция ОД говорит о том, что такая неисправность возможна.

Рис. 6.3. Общая структура экспертной системы диагностирования

Так поступают опытные мастера радиоэлектронной аппаратуры (РЭА), знающие “слабые” места в конкретных типах РЭА и проверяющие их в первую очередь. ЭСД накапливает вероятностные знания о конкретных неисправностях с целью их использования при логическом выводе.

При движении по дереву поиска решений на очередном шаге используется критерий — максимум отношения вероятности (коэффициента уверенности) постановки диагноза к трудоемкости распознавания неисправности.

Коэффициенты уверенности автоматически корректируются во время работы ЭСД при каждом подтверждении или неподтверждении диагноза для конкретных ситуаций.

ЭСД не была реализована в виде ИРС по экономическим соображениям. Небольшая серийность проверяемой аппаратуры, недостаточная унификация и дешевая рабочая сила (последний фактор и в наше время играет в России немаловажную роль) помешали реализовать полностью автоматическое диагностирование [37].

  1. Что входит в обработку данных?
  2. Перечислите составные компоненты инженерии знаний.
  3. В чем различие алгоритмов и эвристик?
  4. Поясните суть процесса логического вывода.
  5. Что называется робастностью?
  6. Какими качествами должна обладать ЭС?
  7. В чем важность самосознания ЭС?
  8. Перечислите виды классификации ЭС.
  9. Назовите трудности, возникающие при разработке ЭС.
  10. Поясните методологию ЭС.
  11. Что называют метазнаниями?
  12. Что означает “Символьная структура”?

Источник: http://www.intuit.ru/studies/courses/1054/228/lecture/5927?page=2

Экспертные системы или искусственный интеллект | Портал о системах видеонаблюдения и безопасности

2.4. Системы искусственного интеллекта 2.4.1. Экспертные системы

Экспертная система (Expert + Knowledge = Advice) представляет собой компьютерную программу, которая содержит знания и делает логическое заключение о специализированной предметной области для решения определенных задач или предоставления соответствующих рекомендаций. Это приложение, которое выполняет задачу, как если бы это был человеческий эксперт. Например, существуют экспертные системы, которые могут диагностировать заболевания человека, составлять финансовые прогнозы и планировать оптимальные маршруты маршрутов для транспортных средств. Некоторые экспертные системы предназначены для выполнения большинства экспертных функций, а другие предназначены для их помощи. Экспертные системы являются частью общей категорией компьютерных приложений, известные как искусственный интеллект.

Интегрированная производственная система на языке C (CLIPS) является разработкой Космического центра Johnson NASA . Это инструментальный инструмент для создания экспертных систем. До 1986 года он не был доступен за пределами NASA.

С 1996 года серьезное внимание уделялось программам, финансируемым ERUIT , Европейской сети по разработке методов неопределенности с применением в информационных технологиях (ERUDIT); Европейская интеллектуальная технология Perfect Network для интеллектуальных технологий и адаптивных интеллектуальных систем (EUNITE); программа IST.

Экспертные системы

Экспертные системы представляют собой компьютерные информационные системы, которые предоставляют знания и делают их доступными для пользователей для решения конкретных проблем.

Экспертные системы разработаны для решения ряда различных типов проблем в нескольких категориях: интерпретация, прогнозирование, диагностика, проектирование, планирование, мониторинг, отслеживание, восстановление, управление, управление.

Прикладными областями для экспертных систем являются: агрономия, химия, компьютерные системы, электроника, инженерия, геология, юриспруденция, промышленность, математика, медицина, метеорология, военная наука, физика, управление процессами, космические технологии.

Экспертные системы могут также использоваться для обучения в соответствующей области, используя свой опыт в решении проблемы и их организованных знаний.

Системы с использованием искусственного интеллекта

Быстрое развитие информационных технологий и их применение в промышленности создали необходимость решения ряда сложных проблем. Для их решения необходимы различные подходы. Искусственный интеллект предлагает подходящую возможность решить некоторые сложные проблемы отрасли.

Основная задача технологии, основанной на искусственном интеллекте и знаниях, заключается в создании интеллектуальных систем программирования, Такие системы обеспечивают решения проблем, связанных с большим количеством пространства поиска для неопределенных граничных условий и неполных данных, применяя эвристические стратегии и используя знания в предметной области.

Сбор, структурирование и представление имеющихся знаний – ключевая проблема систем, основанных на знаниях. Интеллектуальные системы, основанные на знаниях, используются в области производства, технического обслуживания оборудования и технической диагностики.

Во многих проблемах разбирательства решения носят неопределенный характер и предполагают множество альтернативных действий. Решения обычно зависят от опыта этих вопросов, к которым они применяются.

Применение экспертных систем

Типичные задачи экспертных систем:

  1. Интерпретация данных (например, звуковых сигналов)
  2. Диагностика неисправностей или заболеваний
  3. Структурный анализ сложных объектов (например, химических соединений)
  4. Конфигурация сложных объектов (например, компьютерных систем)
  5. Последовательности действий планирования

Применение интеллектуальных систем

Системы, основанные на знаниях, применимы к широкому кругу вопросов. Согласно D.Sriram [2], они должны использоваться для таких задач, как проектирование (проектирование), диагностика, интерпретация, управление, планирование и прогнозирование.

Проектирование, планирование и прогнозирование создают объекты высокого уровня с использованием метода интеграции классов объектов нижнего уровня. Диагностика, интерпретация и управление обеспечивают и интерпретируют данные и знания на этапе составления выводов и предоставления возможных решений.

Каждая из этих проблем частично разлагается на ее особенности, что помогает понять отражение эксперта в конкретной области.

1. Проектирование

Проектирование – это процесс создания системы или объекта, который отвечает определенным требованиям. Одной из таких систем является XCON (в оригинале R1). Эта система предназначена для настройки компьютеров VAX. Система работает с использованием метода частично решенных схем.

FADES – это система проектирования и планирования оборудования. Знание представлено правилами, выполняемыми в виде логических процедур и предикатов первого порядка.

База знаний включает в себя знание следующих областей: технологическое рабочее место, экономический анализ инвестиций, выбор назначенных алгоритмов, планирование и восстановление информации, полученной методом логических правил в существующей базе данных и другими знаниями.

Требования к проектированию системы включают достижение целей встречи без высокой стоимости ресурсов. Для разрешения возможных конфликтов необходимо ввести приоритеты.

Системы должны быть гибкими, требования со временем могут меняться или неизбежно непредвиденные замены конструктивных параметров. Ключевыми проблемами такого типа систем, основанных на знаниях, являются следующие:

вся последовательность проектных решений не должна быть заранее предсказана до тех пор, пока дизайн не продвинется значительно;

необходимо построить иерархию подзадач;

конструктивные ограничения исходят из нескольких источников;

переориентация неизбежна, и замена параметров дизайна может быть замечена только в перспективе;

требуются особые отношения между параметрами дизайна, они не могут быть легко аппроксимированы качественной отчетностью.

2. Диагностика

Диагностика рассматривается как процесс обнаружения ошибок и сбоев в любой системе. Лучшим примером диагностической системы является система MYCIN, разработанная Shortliffe.

Другая известная диагностическая система – это DELTA, разработанная Bonissone для General Electric, для обнаружения неисправностей двигателя. Чтобы выбрать определенный диапазон сбоев локомотива, система задает ряд подробных вопросов для пользователя системы.

На каждом этапе система объясняет аргументы эксперта, которого она применяла. Наконец, когда выявлен отказ локомотива, система создает конкретные обратные инструкции. База знаний DELTA содержит более 500 правил, изложенных на своем языке для презентации. Система использует гибкую поисковую систему.

Сначала система была разработана в LISP, а затем перепрограммирована в FORT.

ACE – это диагностическая система, которая обнаруживает и диагностирует сбои в телефонной сети путем выявления плохих мест в сети и рекомендует соответствующие ремонтные и реабилитационные услуги.

Система анализирует данные из операций обслуживания и генерирует выходные данные, описывающие физическое местоположение сбоев и характеристик сети в этом месте. ACE работает без вмешательства человека, анализируя данные обслуживания, ежедневно генерируемые CRAS, компьютерной программой для администрирования отказа кабеля.

ACE решает, какие части телефонной сети могут потребовать переключения или восстановления и сохраняет общую информацию из этих выводов в отдельной базе данных, к которому пользователь имеет доступ.

Когда система обнаруживает поврежденные телефонные кабели, она решает, нуждаются ли они в профилактическом обслуживании, и выбирает тип поддержки как можно более эффективный, и рекомендации записываются в базе данных, к которым пользователи имеют доступ.

ACE принимает решения с использованием знаний приложений для проводных центров, ежедневных данных обслуживания CRAS и стратегий сетевого анализа. ACE может генерировать выводы, но не может объяснить аргументы перед этим, вместо этого добавить к нему сводку данных, которые приводят к ней, которая удовлетворяет пользователей системы.

Система ACE была разработана в ОАДЕ – 4 и Франц Лиспе для VAX-11/780 компьютеров, в основном испытанные, а затем преобразованные в суперкомпьютеры AT & T 3B-2 Model 300, которые расположены в службах анализа кабельной сети. Он был разработан Bell Laboratories в Уиппани, штат Нью-Джерси.

NDS обнаруживает сложные множественные сбои в сети связи COMNET, реализуя стратегии экспертной диагностики, основанные на знаниях топологии сети и ее состава.

Система предлагает выполнить диагностический тест, и результат каждого теста обеспечивает доказательство наличия сбоев или нет в любом из нескольких компонентов. Компоненты включают в себя процессоры связи, модемы, телефонные соединения и компьютерные терминалы.

NDS является основанной на правилах системой и реализованной в ARBY. Система разработана в Smart Systems Technology в сотрудничестве сShell Development Company .

Экспертиза в диагностических системах предполагает поиск последовательных и неверных интерпретаций данных и понимание взаимосвязи между подсистемами. Ключевыми проблемами, возникающими в этом типе системы, являются следующие:

данные могут быть частичными, противоречивыми и несвязанными;

повторяющиеся ошибки могут быть замаскированы или могут вызывать симптомы, которые в противном случае решаются экспертами;

оборудование может ошибаться, результаты испытаний могут быть неверными;

некоторые данные могут быть недоступны или могут быть получены случайно.

3. Интерпретация

Интерпретация – это процесс анализа данных u1085 для определения их значения. Система такого типа DENDRAL , разработанная Бьюкененом. Система способна имитировать химическую экспертизу. Требования к интерпретации такие же, как и для диагностики, т.е.

умение системы состоит в нахождении последовательных, последовательных интерпретаций данных и без отклонения возможных кандидатов до тех пор, пока не будет отклонено достаточное количество доказательств.

Вопросы, связанные с интерпретацией, такие же, как и для диагностики, с одним дополнением: шаблоны распознавания образов в интерпретации длиннее и сложнее, чем диагностические диаграммы.

4. Управление

Управление рассматривается как процесс непрерывной или периодической интерпретации сигналов и включение сигнала оповещения, когда это требует интерпретация (обычно в режиме реального времени). Одной из таких систем является AAMS, разработанный Харау, для акустического контроля процесса обнаружения дефектов железнодорожных колес.

Другая система управления – это NAVEX, разработанная Гилбертом для управления полетом. Помимо интерпретаций и частичной диагностики, системы этого типа должны быть способны реагировать на различные ситуации тревоги и быть в состоянии избежать ложной тревоги.

Практическая проблема с такими системами заключается в том, что условие предупреждения часто зависит от контекста и связано с ожиданием сигналов, со временем и ситуацией.

5. Планирование

Планирование – это процесс создания программ для достижения нескольких целей. Планирование производства – это область, требующая значительных знаний и опыта. Эта область очень подходит для применения систем, основанных на знаниях.

Первая система планирования MOLGEN, разработанная Stefik, заключается в планировании экспериментов по молекулярной генетике. Другим примером является система ESFAS, разработанная Калбером, для оказания помощи в разработке полетов НАСА.

Система GERI основана на знаниях в процессе планирования. Эти знания представлены в качестве производственных правил.

База знаний системы состоит из описания характеристик, размеров и геометрических соотношений между объектами области объекта системы.

Требования к планированию и проблемы аналогичны требованиям к дизайну с добавлением требования к расписанию.

6. Прогнозирование

Прогнозирование рассматривается как процесс прогнозирования будущего на основе моделей прошлого и настоящего, а также соображений времени и случайной последовательности. Проблемы с этим типом системы заключаются в следующем:

  1. теория прогнозирования учитывает ситуации в будущем;
  2. изобилие различных видов информации;
  3. повторение функций всегда возможно, их следует описывать в порядке приоритета.
  4. При прогнозировании, а также при планировании и проектировании количество возможных решений иногда намного превышает количество интеллектуальных решений.

Возможности обучения.

Системы, основанные на знаниях, могут использоваться для обучения с использованием их опыта в решении проблемы и их организованных знаний.

Общие характеристики экспертных систем

  1. Экспертные системы заключают на основе некоторого представления человеческих знаний
  2. Экспертные системы обычно решают задачи с использованием эвристических или приближенных методов
  3. Экспертные системы моделируют то, как люди делают выводы в определенной предметной области, а не в поле
  4. эвристика
  5. Эвристика – это правила, основанные на опыте, которые кодируют определенные знания о том, как решить проблему из определенной области.
  6. Эвристические методы являются приблизительными в том смысле, что они не требуют точных данных, и решения могут быть извлечены из системы с определенной степенью определенности.

Интеллектуальная архитектура систем

Архитектура основанных на знаниях систем включает в себя следующие компоненты:

  1. база знаний (общее знание проблемы, т. Е. Факты и правила);
  2. база данных (информация о текущей проблеме, то есть входные данные);
  3. механизм заключения (методы применения общего знания к проблеме);
  4. пояснительный компонент (который информирует пользователя о выводах);
  5. пользовательский интерфейс и компонент сбора знаний; (область памяти для хранения описания и состояния проблемы, построенная из фактов, предоставленных пользователем или извлеченных из базы знаний).

Источник: https://bezopasnik.info/%D1%8D%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D1%82%D0%BD%D1%8B%D0%B5-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B/

Medic-studio
Добавить комментарий