Биореакторы: Биореакторы — это аппараты, в которых осуществляются биохимические

Оборудование компании BIORUS

Биореакторы: Биореакторы — это аппараты, в которых осуществляются биохимические

01.12.2015

Основная ферментация
   Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и нагретую до требуемой температуры среду посевного материала и до завершения процесса роста клеток или биосинтеза целевого продукта [49]. По окончании ферментации образуется сложная смесь, состоящая из клеток продуцента, раствора непотребленных питательных компонентов и накопившихся в среде продуктов биосинтеза. Такую смесь называют культуральной жидкостью.

   Технологические особенности процессов ферментации     По технологическому оформлению различают следующие микробиологические процессы: аэробное и анаэробное культивирование; твердофазное, поверхностное и глубинное культивирование; периодическое и непрерывное культивирование.

   Аэробное культивирование — аэрация среды — непременное условие в тех микробиологических процессах, в которых используются аэробные микроорганизмы-продуценты. 

   Потребность аэробных микроорганизмов в молекулярном кислороде зависит от окисляемого источника углерода и от физиологических свойств и активности роста микроорганизмов. Для биосинтеза 1 кг дрожжевой биомассы необходимо, например, 0,74–2,6 кг молекулярного кислорода. При интенсивном потреблении субстрата независимо от источника углерода продуцент ассимилирует 0,83–4,0 мг кислорода/1 л среды/мин.    Растворимость кислорода в среде сравнительно низка и зависит от температуры, давления и от концентрации растворенных, эмульгированных и диспергированных компонентов (табл. 1). При давлении 0,1 МПа и температуре 30°С в 1 л дистиллированной воды максимальное количество растворенного кислорода составляет 7,5 мг. В реальной питательной среде максимальная растворимость кислорода колеблется в интервале 2–5 мг/л. Запасы кислорода в среде обеспечивают жизнедеятельность аэробного продуцента в течение 0,5–2 мин.    При глубинном культивировании запасы кислорода в питательной среде возобновляются при подаче аэрирующего воздуха. Скорость абсорбции кислорода увеличивается с ростом интенсивности перемешивания среды (табл. 2).    Во время роста биомассы микроорганизмы обычно потребляют больше кислорода, чем во время сверхсинтеза целевого метаболита. Принято говорить о критической концентрации кислорода, при которой наблюдается лимитация дыхания клеток. Для большинства аэробных микроорганизмов, растущих в сахаросодержащих субстратах, критическая концентрация кислорода 0,05–0,10 мг/л, что соответствует 3–8 % от полного насыщения среды кислородом. Лимитация роста и физиологической деятельности клеток наблюдается при более высоких концентрациях кислорода: на средах с глюкозой рост дрожжей лимитируется при рО2 на уровне 20–25 % от полного насыщения. 

   Оптимальной для роста биомассы считается концентрация кислорода 50–60 % от полного насыщения, для биосинтеза целевых метаболитов — 10–20 %.

   Таблица 1.    Зависимость абсорбции кислорода в воде (мг/л) от концентрации диспергированных компонентов (20 °С) 

СахарозаПодсолнечное маслоБиомасса
концентрация, %абсорбция О2концентрация, %абсорбция О2концентрация, %абсорбция О2
08,208,908,0
2,57,80,0511,63,04,1
5,07,20,1018,96,02,4
7,56,60,1519,09,61,5
10,05,90,2022,316,01,2
15,04,80,2524,032,00,8

   Таблица 2.    Зависимость скорости абсорбции кислорода в воде от аэрации и перемешивания среды* (мг/(л • мин)) 

Количество подаваемого воздуха, м3/(м3*мин)Частота вращения мешалки, мин-1
050080010002000
0,351,34,07,514,515,1
0,653,57,312,119,122,1
1,006,010,015,023,024,0
1,307,513,918,026,028,0
1,6011,015,520,027,029,0

   Анаэробные процессы биологического окисления у гетеротрофных микроорганизмов в зависимости от того, что является конечным акцептором водородных атомов или электронов, делят на три группы: дыхание (акцептор — кислород); брожение (акцептор — органическое вещество) и анаэробное дыхание (акцептор — неорганическое вещество : нитраты, сульфаты и др.).    У облигатных анаэробов брожение является единственно возможным способом получения энергии; у факультативных анаэробов оно составляет обязательную первую стадию катаболизма глюкозы, за которой может следовать аэробное окисление образовавшихся продуктов, если в среде присутствует кислород.    Обособленной промежуточной группой являются аэротолерантные микроорганизмы, получающие необходимую для жизнедеятельности энергию в анаэробном процессе, т. е. на уровне субстратного фосфорилирования, и одновременно имеющие дыхательную цепь для поглощения кислорода среды и создания благоприятных анаэробных условий. Данный эффект носит название «эффекта дыхательной защиты».    Примерами облигатно анаэробных процессов являются маслянокислое и метановое брожения. Универсальным для всех микроорганизмов, за небольшими исключениями, является катаболизм глюкозы — гликолиз до образования пирувата:

           Глюкоза + 2АТР + 2 NAD = 2 Пируват + 4АТР + 2NADH + 2Н+

   Возбудители спиртового брожения (дрожжи) после декарбоксилирования пирувата и образования ацетальдегида восстанавливают ацетальдегид до этанола. Молочнокислые бактерии гомогенного молочнокислого брожения восстанавливают пируват до молочной кислоты. Гетероферментативные молочнокислые бактерии сбраживают глюкозу по несколько отличающемуся пентозофосфатному пути с образованием молочной кислоты, а также уксусной кислоты, этанола и диоксида углерода.     Анаэробные условия на производстве создают герметизацией аппаратуры, продуванием среды инертными газами, в том числе газообразными продуктами, образовавшимися во время ферментации. Отсутствие необходимости аэрации среды несколько упрощает при анаэробной ферментации конструкцию биореактора и облегчает управление процессом.

   Твердофазную ферментацию обычно реализуют в твердой, сыпучей или пастообразной среде, влажность которой составляет 30–80 %.

   Различают три типа твердофазных процессов:    • поверхностные процессы: слой субстрата, например соломы, не превышает 3–7 см («тонкий слой»); роль биореактора выполняют большие, площадью до нескольких квадратных метров, подносы из алюминия или культивационные камеры);     • глубинные твердофазные процессы в неперемешиваемом слое («высокий слой»): биореакторы представляют собой глубокие открытые сосуды. Для аэробных процессов разработаны приспособления, обеспечивающие диффузионный и конъюктивный газообмен;

   • твердофазные процессы в перемешиваемой и аэрируемой массе субстрата, которая может быть гомогенной или состоять из частиц твердого субстрата, взвешенных в жидкости.

   Если субстрат сыпучий, то отдельные твердые частицы его хорошо контактируют с воздухом, рост микроорганизмов в этом случае происходит главным образом на поверхности твердых частиц, а также в порах, заполненных либо водой, либо воздухом.

Обеспечение микроорганизмов кислородом затрудняется с увеличением слоя субстрата.

Перемешивание слоя не допускается, если культивируются мицелиальные микроорганизмы, например микромицеты, и из-за отсутствия перемешивания рост микроорганизмов происходит по принципу колонизации, поэтому часто возникает локальная нехватка питательных веществ.

Другая проблема при твердофазной ферментации — отвод теплоты и поддержание постоянной температуры во всей ферментационной среде.     Однако твердофазные процессы имеют и преимущества по сравнению с процессами, протекающими в жидкой среде: 

   • они требуют меньших затрат на

ферментер лабораторный и другое оборудование,а так же их эксплуатацию;     • характер субстрата облегчает отделение и очистку продукта;     • низкое содержание воды в субстрате препятствует заражению культуры продуцента посторонней микрофлорой; 

   • твердофазные процессы не связаны со сбросом в окружающую среду большого количества сточных вод.

   Управляемый процесс твердофазной ферментации в промышленных условиях осуществлен при производстве ферментов с использованием микромицетов.

Сыпучий субстрат с культурой инкубируют в тонком слое (3–7 см) в кюветах, размещенных в камерах, где поддерживают оптимальные температуру и влажность воздуха, обеспечивают принудительную циркуляцию газовой фазы вдоль поверхности ферментируемого субстрата. Воздух в данном случае является и аэрирующим, и теплоотводящим агентом.

   Более толстый слой гранулированного крахмалсодержащего субстрата используют для протеинизации (до 20 %) корма при помощи Asp. niger. В данном случае применяют неинтенсивное перемешивание среды.

   Поверхностная ферментация на жидких субстратах реализуется в кюветах со средой, помещенных в вентилированные воздухом камеры.

Культура микроорганизмов при этом образует биомассу в виде пленки или твердого слоя на поверхности жидкой среды. Культура потребляет кислород непосредственно из газовой фазы — воздуха. Массообмен в таких условиях малоинтенсивный.

   Глубинное культивирование микроорганизмов происходит во всем объеме жидкой питательной среды, содержащей растворенный субстрат. Ферментер должен обеспечивать рост и развитие популяций микроорганизмов в объеме жидкой фазы, подвод питательных веществ к клеткам микроорганизмов, отвод от микробных клеток продуктов их обмена веществ (метаболизма), отвод из среды выделяемого клетками тепла.    Глубинное культивирование можно осуществлять периодическим и непрерывным способами.

   Периодическое культивирование. При периодическом способе культивировании в ферментер загружают сразу весь объем питательной среды и вносят посевной материал. Выращивание микроорганизмов проводят в оптимальных условиях в течение определенного времени, после чего процесс останавливают, сливают содержимое ферментера и выделяют целевой продукт.

   Этап роста культуры включает: лаг-фазу, экспоненциальную фазу, фазу замедления роста, стационарную фазу, фазу отмирания.    Широко применяют периодическое культивирование с подпиткой. Существует также объемно-доливочное культивирование, когда часть объема из биореактора время от времени изымается при добавлении эквивалентного объема среды (полунепрерывное культивирование).

   Непрерывные процессы. При непрерывном способе питательная среда непрерывно подается в биореактор, в котором создают оптимальные условия для роста микроорганизмов, а из биореактора также непрерывно вытекает культуральная жидкость вместе с микроорганизмами.

   В непрерывных процессах биообъект поддерживается в экспоненциальной фазе роста. При этом существует равновесие между приростом биомассы за счет деления клеток и их убылью в результате разбавления свежей средой.    Из непрерывных процессов лучше всего изучен метод глубинной ферментации. Процесс может быть гомогенно или гетерогенно-непрерывным.     При гомогенно-непрерывном процессе в аппарате, где идет интенсивное перемешивание, все параметры постоянны во времени.     При гетерогенно-непрерывном процессе несколько ферментеров соединены вместе. Питательная среда поступает в первый аппарат, готовая культуральная жидкость вытекает из последнего.    При непрерывном культивировании микроорганизмов необходимо предотвратить вымывание культуры из системы, т. е. обеспечить постоянную концентрацию клеток. В стерильных условиях непрерывный, проточный метод обеспечивает сохранение культуры в физиологически активном состоянии длительное время.    В зависимости от метода, благодаря которому культура поддерживается в состоянии динамического равновесия (когда ? = D), различают турбидостатный и хемостатный принципы.     При турбидостате скорость притока среды такова, что концентрация биомассы в системе постоянна; при хемостате в системе ограничивают рост культуры одним элементом питания (углерода, кислорода, соответствующего витамина и др.) при нелимитируемых количествах остальных. Известны также методы управления ростом проточной культуры по рН (рН-стат), по кислороду (оксистат).    В зависимости от цели производства — получение клеток или продуктов их жизнедеятельности — способы ведения основной ферментации различаются. Если процесс направлен на получение биомассы, то назначение ферментации — получить максимально возможный титр клеток, а в случае получения метаболитов их накопление осуществляют одновременно, причем максимумы образования продуцента и целевого продукта всегда сдвинуты по времени. Поэтому продолжительность ферментации в первом случае всегда меньше, чем во втором.    Если целью является получение биомассы промышленного штамма в периодическом процессе, то время культивирования не превышает 24 ч. При производстве первичных метаболитов время биосинтеза составляет 48–72 ч, а вторичных — 72–144 ч.

   При культивировании различных микроорганизмов интервал рабочих температур варьирует в пределах 25–60°С, значения рН — 2?9, расход воздуха в аэробных процессах — 0,15–2,5 м3/1 м3 среды/мин.

   Конструкции ферментеров (биореакторов)     В микробиологических производствах в зависимости от особенностей процесса применяют разнообразные ферментеры, или биореакторы.  Аппараты для аэробной поверхностной ферментации широко применяются для производства органических кислот.

Поверхностная жидкофазная ферментация протекает в так называемых бродильных вентилируемых камерах, в которых на стеллажах размещены плоские металлические кюветы. В кюветы наливают жидкую питательную среду (высота слоя составляет 80–150 мм), затем с потоком подаваемого воздуха среду инокулируют спорами продуцента.

В камере стабилизируется влажность, температура и скорость подачи воздуха. После завершения процесса культуральная жидкость сливается из кювет через вмонтированные в днище штуцеры и поступает на обработку.

   При твердофазной ферментации процесс также протекает в вентилируемых камерах, но вместо кювет на стеллажах размещают лотки, в которые насыпают сыпучую твердую среду слоем 10–15 мм. Для лучшей аэрации среды подаваемый в камеру воздух проходит через перфорированное днище лотков.

   Аппараты для аэробной глубинной ферментации наиболее сложны как конструкционно, так и с точки зрения их эксплуатации. задача — обеспечение высокой интенсивности массо и энергообмена клеток со средой.    По структуре потоков биореакторы могут быть аппаратами полного перемешивания или полного вытеснения.    Конструктивные различия биореакторов определяются в основном способами подвода энергии и аэрации среды:     • биореакторы с подводом энергии к газовой фазе;     • биореакторы с подводом энергии к жидкой фазе; 

   • биореакторы с комбинированным подводом энергии.

   Биореакторы с подводом энергии к газовой фазе. В аппаратах этого типа аэрация и перемешивание культуральной жидкости осуществляются сжатым воздухом, который подается в биореактор под определенным давлением.

К таким биореакторам относят:    • барботажные биореакторы, подача воздуха в которых осуществляется через барботажные устройства, расположенные в нижней части аппарата;     • аппараты с диффузором (эрлифтные аэраторы), имеющие внутренний цилиндр-диффузор, который обеспечивает перемешивание поступающих по распределительным трубам в нижнюю часть аппарата субстрата и воздуха;     • трубчатые биореакторы (газлифтные), состоящие из реактора кожухотрубчатого типа, через который жидкость потоком воздуха перемещается в верхнюю часть аппарата и, попадая в сепаратор, возвращается в реактор, где снова увлекается воздухом, подвергаясь таким образом циркуляции;     • биореакторы с форсуночным воздухораспределением, оборудованные форсунками для подачи воздуха, расположенными в нижней части аппарата, и находящимся над ними диффузором, который обеспечивает внутреннюю циркуляцию жидкости; 

   • биореакторы колонного типа, представляющие собой цилиндрическую колонну, разделенную горизонтальными перегородками (тарелками) на секции; воздух барботирует через слой жидкости каждой тарелки, а перемещение жидкости через кольцевую щель обеспечивает противоточное движение жидкой и газовой фаз.

   Биореакторы с подводом энергии к жидкой фазе.

 К таким аппаратам относят:    • аппарат с самовсасывающей турбиной, имеющий цилиндрический диффузор и мешалку с полыми лопастями и валом, при вращении которой за счет создаваемого разрежения происходит самовсасывание воздуха, благодаря чему происходит подъем жидкости в кольцевом зазоре между диффузором и стенками аппарата с последующим ее возвращением в диффузор; 

   • биореактор с турбоэжекторными перемешивающими устройствами — аппарат, разделенный вертикальными перегородками на секции, в каждой из которой имеется самовсасывающая мешалка турбинного типа (эжектор) и диффузор; для перемещения жидкости из секции в секцию в перегородках сделаны окна.

   Биореакторы с комбинированным подводом энергии. В этих аппаратах осуществлен подвод энергии к газовой фазе для аэрации и к жидкой фазе для перемешивания.

Бореактор представляет собой цилиндрический сосуд, снабженный механической мешалкой и барботером, который устанавливается, как правило, под нижним ярусом мешалки.

   Используется также классификация биореакторов по способу перемешивания, в соответствии с которой используются аппараты с механическим, пневматическим и циркуляционным перемешиванием.

   Аппараты с механическим перемешиванием имеют механическую мешалку, состоящую из центрального вала и лопастей различной формы. Аэрация может осуществляться путем барботажа. Разбрызгиванию воздуха в виде мелких пузырьков способствует механический вибратор, установленный рядом с барботером.

   Аппараты с пневматическим перемешиванием. Перемешивание и аэрация усиливаются с помощью вращающихся дисков с отверстиями, установленных вблизи барботера, или с помощью придонных пропеллеров. Классический эрлифтный аппарат дополнен диффузором, нижний обрез которого находится над барботером. Возможны варианты подачи воздуха как во внутренний, так и во внешний по отношению к диффузору объем среды. 
   Аппараты с циркуляционным перемешиванием содержат устройства (насосы, эжекторы), создающие направленный ток жидкости по замкнутому контуру. Насос для циркуляции культуральной жидкости может соседствовать с барботером (сочетание пневматического и циркуляционного перемешивания). Существуют разные варианты такого типа аппаратов: аппараты типа «падающей струи», типа «погруженной струи», перемешивание с помощью эжектора. Аппараты циркуляционного типа часто заполняют твердыми частицами (насадкой).    Биореакторы обычно представляют собой герметические цилиндрические емкости, высота которых в 2–2,5 раза превышает диаметр. Чаще всего их изготовляют из нержавеющей стали. Для поддержания температуры в аппарате имеется двойной кожух или теплообменник типа змеевика.     Главное требование к аппаратам — сохранение стерильности, поэтому они должны быть герметичными, все линии трубопроводов должны быть доступны для обработки горячим паром. Рабочий объем биореактора обычно не превышает 7/10 общего объема.     Тип биореактора для каждого биотехнологического процесса выбирают с учетом специфики продуцента, свойств среды и экономических соображений. Важное значение для аэробного процесса имеет система аэрации. При этом оценивают, с одной стороны, скорости поступления кислорода с жидкостью и его массопередачи от газовой фазы, с другой — скорости потребления кислорода микроорганизмами и его удаления с отработавшей жидкостью. Скорость перехода кислорода из газовой фазы в жидкую выражают через объемную скорость абсорбции. Изменение концентрации кислорода в жидкой фазе характеризуется уравнением

        dC/dt = KLa (Cp – С),

где KLa — объемный коэффициент массопередачи на границе газ—жидкость; Сp — равновесная концентрация кислорода в среде; С — фактическая мгновенная концентрация кислорода в среде.
Основные факторы среды, определяющие рост и биосинтетическую активность продуцентов

ФакторРоль при культивированииМетоды управления фактором
Состав и концентрация питательных веществОбеспечивает метаболизмСоставление оптимальной композиции; подпитка во время ферментации; непрерывность процесса; многостадийность с учетом потребностей продуцента по фазам развития и др.
Концентрация продуктов и ингибиторовЗамедляет биохимические реакцииОсаждение продукта по мере накопления; ферментация с диализом; ферментация под разрежением с испарением летучего продукта и др.
рНОптимизирует скорости биохимических реакцийРегулирование путем добавления кислоты или щелочи
ТемператураТо жеОхлаждение или подогрев культуральной жидкости при помощи теплообменников или температуры подаваемых в биореактор субстратов 
Осмотическое давление или активность водыОпределяет границы жизни (составляет 0,6-0,998)Составление сред с оптимальной концентрацией питательных веществ или влажностью твердой среды; поддержание на постоянном уровне во время ферментации путем разбавления водой или добавлением отдельных компонентов
растворенного кислородаДля аэробов обеспечивает аэробный метаболизм; является акцептором Н+; ингибирует развитие анаэробовДля аэробных процессов регулируют интенсивностью аэрации или добавлением к газовой смеси кислорода. Анаэробные процессы реализуют в бескислородной среде
диоксида углеродаИсточник углерода для автотрофов; некоторые гетеротрофы нуждаются, а некоторые замедляют метаболизм в присутствии СО2Продувание в фотосинтезирующих процессах ферментации газовой средой, обогащенной СО2; выделению СО2 из жидкой фазы способствует перемешивание
Перемешивание средыРавномерное распределение питательных веществ и биомассы по всему пространству средыОрганизуют макро- и микроперемешивание при помощи механических мешалок, барботажных, циркуляционных и других систем
Вязкость средыОпределяет диффузию питательных веществ и перемешивание клеток продуцентаРегулирование компонентами питания, характером и концентрацией биомассы, наличием некоторых полимерных продуктов. Вязкость влияет на перемешивание и аэрацию; требуются специальные технические средства  

Источник: https://bio-rus.ru/stati/fermenteryi-i-bioreaktoryi.html

Принципы действия и конструкции биореакторов

Биореакторы: Биореакторы — это аппараты, в которых осуществляются биохимические

Предыдущая39404142434445464748495051525354Следующая

Биореактор – это система, имеющая ограничивающую поверхность, в которой протекают биохимические реакции.

Промышленный биореактор – это емкость, в которой осуществляются рост микроорганизмов и/или различные химические превращения.

Однако существуют принципы, общие по форме, но различающиеся по практической реализации:

1) принцип масштабирования – поэтапное увеличение объема аппаратов;

2) принцип однородности физико-химических условий – температуры, рН, концентрации растворенных веществ (кислород и др. газы) во всем объеме аппарата.

Для биотехнологических процессов характерны следующие этапы:

1) загрузка субстратов для реакций синтеза;

2) превращения субстратов;

3) отделение и очистка целевого продукта.

Биотехнологические процессы имеют свою специфику – в них участвуют живые клетки, субклеточные структуры или выделенные из клеток ферменты и их комплексы.

Это оказывает влияние на процессы массопередачи – обмена веществом между различными фазами (например, перенос кислорода из газовой фазы в жидкую) и теплообмена – перераспределения тепловой энергии между взаимодействующими фазами.

Именно поэтому важной составной частью биореактора является система перемешивания, служащая для обеспечения однородности условий в аппарате.

Многие биотехнологические процессы являются аэробными. Для аэрации культуральной среды используют воздух или воздух, обогащенный кислородом, реже чистый кислород. В ходе метаболизма выделяются газообразные продукты (например, СО2), которые подлежат удалению.

Анаэробные процессы зависят от газообразных субстратов или требуют отвода газообразных продуктов жизнедеятельности. Для этого существуют системы газоснабжения и газоотвода, примером которых служат аэраторы. Очень часто потребность в кислороде меняется по мере развития культуры.

Аэратор должен вовремя реагировать на эти изменения, увеличивая или уменьшая подачу кислорода.

Теплообмен является важной составной частью процессов, протекающих в биореакторе, т.к. жизнедеятельность и метаболическая активность биообъекта в существенной мере зависят от температуры. Узкий диапазон температур, оптимальный для биотехнологического процесса, определяется:

– резким спадом активности ферментов по мере снижения температуры;

– необратимой денатурацией биологических макромолекул (белков и нуклеиновых кислот) при повышении температуры до определенного уровня.

Большинство процессов протекает при температурах 30-50°С (мезофильные условия). В этом случае для поддержания оптимума температуры специальный подогрев используют в редких случаях.

Однако для удаления избыточной теплоты, выделяемой в процессе жизнедеятельности культивируемых клеток, в биореакторе должна быть система теплообмена.

Эта система должна чутко реагировать на изменения теплопродукции, происходящие в ходе культивирования биообъекта, поддерживать температуру на постоянном уровне (режим термостатирования) или контролировать ее изменения по заданной программе.

Серьезной проблемой для аэрируемых биотехнологических процессов является вспенивание культуральной среды – образование на ее поверхности слоя из пузырей. Пенообразование связано с наличием в среде поверхностно-активных веществ (продукты распада жиров – мыла, белки).

Пенный слой поверх среды культивирования в биореакторе имеет двоякое значение. Пена способствует росту многих аэробных микроорганизмов. В пенном слое – «кислородном коктейле» – наибольший прирост дают дрожжи.

Внедряясь в границу раздела вода/воздух, пенообразующие ПАВ стимулируют массопередачу между этими фазами, снижая затраты на перемешивание и аэрацию. Однако нежелательные последствия вызывает избыточное пенообразование.

Оно ведет к сокращению полезного объема биореактора, создает угрозу заражения культуры посторонней микрофлорой. Поэтому система пеногашения – необходимая составная часть реактора.

Система стерилизации представляет собой специфический элемент биореактора.

Устранение посторонней микрофлоры из реактора до введения в него штамма-продуцента, поддержание чистоты культуры на всем протяжении биотехнологического процесса, надежная стерилизация питательных сред, добавочных компонентов, титрантов, пеногасителей, подаваемого в биореактор воздуха – принцип асептики биотехнологического производства.

В последнее время в биотехнологии стали применять принцип дифференцированных режимов культивирования: разные этапы одного процесса осуществляют при различных условиях, варьируя такие параметры, как температура, рН среды и др.

Таким образом, в соответствии с основными принципами реализации биотехнологических процессов современный биореактор должен обладать следующими системами:

1) эффективного перемешивания и гомогенизации питательной среды;

2) обеспечения доступа и быстрой диффузии газообразных агентов (система аэрации среды);

3) теплообмена;

4) пеногашения;

5) стерилизации сред, аппаратуры и воздуха;

6) контроля и регулировки процесса.

Как сложные многопараметровые аппараты, биореакторы могут быть классифицированы по ряду критериев:

1) по размеру и целевому назначению:

– лабораторные;

– опытно-промышленные (пилотные);

– промышленные;

2) по режиму работы:

– периодические;

– периодический режим с доливом субстрата;

– полупериодические;

– непрервно-проточные.

3) по условиям культивирования:

– аэробные и анаэробные;

– мезофильные и термофильные;

– для поверхностного и глубинного культивирования;

– аппараты для жидких питательных сред, твердофазные и газофазные.

Предыдущая39404142434445464748495051525354Следующая .

Источник: https://mylektsii.ru/8-34947.html

Реферат: Промышленные биореакторы (виды, схемы, принцип работы, достоинства, недостатки)

Биореакторы: Биореакторы — это аппараты, в которых осуществляются биохимические

Федеральное агентство по здравоохранению и социальному развитию РФ

ГОУ ВПО “Самарский Государственный

Медицинский Университет Росздрава”

Кафедра фармацевтической технологии

Реферат по биотехнологии

Промышленные биотеакторы (виды, схемы, принцип работы, достоинства, недостатки)

Исполнитель:

студентка 6 курса 64 группы

Степанова Светлана Алексеевна

Руководитель:

зав. кафедрой фармацевтической технологии, доктор фармацевтических наук, профессор Первушкин С.В.

Самара 2009

Оглавление

Введение

1. Общая характеристика биореакторов

2. Типы биореакторов

3. Стерилизация и очистка воздуха от микроорганизмов

Заключение

Список литературы

Приложение

Введение

Промышленное производство биопрепаратов представляет собой сложный комплекс взаимосвязанных физических, химических, биофизических, биохимических, физико-химических процессов и предполагает использование большого количества разнотипного оборудования, которое связано между собой материальными, энергетическими потоками, образующими технологические линии.

Биореакторы (ферментеры) составляют основу биотехнологического производства.

Масса аппаратов, используемых, например, в микробной биотехнологии, различна, и требования здесь определяются большей частью экономическими соображениями. Применительно к ферментерам различают следующие типы их: лабораторные емкостью 0,5-100 л, пилотные емкостью 100л-10 м3, промышленные емкостью 10-100 м3 и более.

При масштабировании добиваются соответствия важнейших характеристик процесса, а не сохранения принципа конструкции.

Применяемое в биотехнологии оборудование должно вносить определенную долю эстетичности в интерьер цеха или отделения. В ходе его эксплуатации и вне ее оборудование должно быть легко доступным, содержащимся и функционирующим в определенных рамках требований гигиены и санитарии.

В случае замены каких-либо частей или деталей в аппарате, смазки и чистки узлов при текущем ремонте, и т. д., загрязнения не должны попадать внутрь биореакторов, в материальные поточные коммуникационные линии, в конечные продукты.

1. Общая характеристика биореакторов

Основным аппаратурным элементом биотехнологического процесса является биореактор – ферментер. Биореакторы предназначены для культивирования микроорганизмов, накопления биомассы, синтеза целевого продукта.

Биореакторы изготавливают из высоколигированных марок стали, иногда из титана. Внутренняя поверхность биореактора должна быть отполирована.

Типовые ферментеры представляют собой вертикальные ёмкости различной вместимости (малые – от 1 до 10 л, многотоннажные – более 1000 л) с минимальным числом штуцеров и передающих устройств. В биореакторах должны быть обеспечены оптимальные гидродинамические и массообменные условия (рис. 1).

Ферментеры снабжены паровой рубашкой, мешалками, барботерами, стерилизующими воздушными фильтрами, отбойниками, обеспечивающими необходимые температурный, газовый режим, гидродинамическую обстановку в биореакторе (т.е. процессы массо- и теплообмена).

В биореакторах имеются пробоотборники для отбора проб культуральной жидкости в процессе биосинтеза. Могут быть и другие конструктивные особенности, учитывающие специфику биотехнологичеекого процесса.

Работа отдельных узлов контролируется измерительными приборами, фиксирующими как параметры технологического процесса, так и отдельные физико-химические показатели культивирования (температуру стерилизации и культивирования, скорость вращения мешалки, давление, расход воздуха или газов на аэрацию, ценообразование, рН, еН, рО2 , рСО2 среды).

Тип биореактора, чистота обработки внутренних стенок аппарата и отдельных его узлов, ёмкость, коэффициент заполнения, поверхность теплоотдачи, способ отвода тепла, тип перемешивающих, аэрирующих устройств, арматура и запорные приспособления, способ пеногашения, — далеко не полный перечень отдельных элементов, которые, в отдельности и во взаимосвязи, влияют на процесс культивирования микроорганизмов и клеток.

2. Типы биореакторов

Биореакторы подразделяют на три основные группы (рис. 2):

1) реакторы с механическим перемешиванием;

2) барботажные колонны, через которые для перемешивания содержимого пропускают воздух;

3) эрлифтныереакторы с внутренней или внешней циркуляцией;

Перемешивание и циркуляция культуральной среды в них обеспечивается потоком воздуха, за счет которого между верхним и нижним слоями культуральной среды возникает градиент плотности.

Биореакторы первого типа используют чаще всего, так как они позволяют легко изменять технологические условия и эффективно доставлять к растущим клеткам воздух, определяющий характер развития микроорганизмов и их биосинтетическую активность.

В таких реакторах воздух подают в культуральную среду под давлением через разбрызгиватель – кольцо с множеством маленьких отверстий. При этом образуются мелкие пузырьки воздуха и за счет механического перемешивания обеспечивается их равномерное распределение.

Для этой же цели используют мешалки — одну или несколько.

Мешалки, разбивая крупные пузырьки воздуха, разносят их по всему реактору и увеличивают время пребывания в культуральной среде. Эффективность распределения воздуха зависит от типа мешалки, числа оборотов, физико-химических свойств среды.

При интенсивном перемешивании культуральной среды происходит ее вспенивание, поэтому рабочий объем биореактора не превышает 70% общего объема. Свободное пространство над поверхностью раствора используется как буферное, где накапливается пена, и таким образом предотвращается потеря культуральной жидкости.

В пенящейся жидкости условия аэрации лучше, чем в плотных растворах (при условии непрерывного перемешивания и циркуляции слоя пены, т.е. при исключении нахождения микроорганизмов вне культуральной жидкости).

Вместе с тем вспенивание может привести к переувлажнению фильтров в отверстиях, через которые воздух выходит из биореактора, уменьшению потока воздуха и к попаданию в ферментер посторонних микроорганизмов.

Конструктивные особенности барботажных колонн и эрлифтных биореакторов дают этим типам ферментеров некоторые преимущества перед реакторами с механическим перемешиванием.

Барботажные колонны более экономичны, так как перемешивание в них происходит восходящими потоками воздуха равномерно по всему объему. Отсутствие механической мешалки исключает один из путей проникновения в биореактор посторонних микроорганизмов.

В барботажных биореакторах не возникает сильных гидродинамических возмущений (сдвигов слоев жидкости культуральной среды относительно друг друга).

Уменьшение сдвиговых факторов важно по следующим причинам:

1. клетки рекомбинантных микроорганизмов менее прочны, чем нетрансформированные;

2. клетка отвечает на внешние воздействие уменьшением количества синтезируемых белков, в том числе рекомбинантных; под влиянием сдвиговых эффектов могут изменяться физические и химические свойства клеток, что затрудняет дальнейшую работу с ними (ухудшаются условия выделения, очистка рекомбинантных белков).

В барботажных колоннах воздух подают под высоким давлением в нижнюю часть биореактора; по мере подъема мелкие пузырьки воздуха объединяются, что влечет неравномерное его распределение. Кроме того, подача воздуха под высоким давлением приводит к сильному пенообразованию.

В эрлифтных биореакторах воздух подают в нижнюю часть вертикального канала. Поднимаясь, воздух увлекает за собой жидкость к верхней части канала, где расположен газожидкостный сепаратор (здесь частично выходит воздух).

Более плотная деаэрированная жидкость опускается по другому вертикальному каналу ко дну реактора и процесс повторяется.

Таким образом, в эрлифтном биореакторе культуральная среда вместе с клетками непрерывно циркулирует в биореакторе.

Эрлифтные биореакторы выпускаются в двух конструктивных вариантах. В первом – реактор представляет емкость с центральной трубой, которая обеспечивает циркуляцию жидкости (реакторы с внутренней циркуляцией). У эрлифтного биореактора второго типа культуральная среда проходит через отдельные независимые каналы (реактор с внешней системой циркуляции).

Эрлифтные биореакторы более эффективны, чем барботажные колонны, особенно в суспензиях микроорганизмов с большей плотностью или вязкостью. Перемешивание в эрлифтных ферментерах более интенсивно и вероятность слипания пузырьков минимальна.

3. Стерилизация и очистка воздуха от микроорганизмов

Для стерилизации биореактора применяют пар под давлением. Внутри биореактора не должно быть “мертвых зон”, недоступных для пара во время стерилизации. Стерилизации подлежат все клапаны, датчики, входные и выходные отверстия.

Стерильность обеспечивается и герметизацией биотехнологического оборудования, работающего в асептических условиях. Стерильная передача жидкости осуществляется через штуцеры парового затвора.

Технологическая обвязка биореактора исключает контаминацию культуральной жидкости посторонней микрофлорой и возможности попадания продуктов биосинтеза в окружающую среду. Основные агенты, контаминирующие клеточные культуры – бактерии, дрожжи, грибы, простейшие, микоплазмы, вирусы.

Источники контаминации – воздух, пыль, питательные среды, рабочие растворы, оборудование, рабочий персонал.

Очистка воздуха от микроорганизмов и аэрозольных частиц осуществляется через фильтры предварительной очистки (комбинированные глубинные фильтры — бумага, картон, тканевые материалы), которые устанавливают на всасывающей линии перед компрессором (воздух очищается от частиц размером более 5 мкм) и фильтры тонкой очистки (ткань ФП, удаляющая частицы размером до 0,3 мкм, металлокерамические и мембранные фильтры).

Металлокерамические фильтры изготовлены из калиброванных металлических порошков (бронзы, никеля, нержавеющей стали, титана) способами спекания, прессования, прокатки; размер пор варьирует от 2 до 100 мкм. Металлокерамические фильтры стерилизуют при температуре 150 °С 50 мин. Они стойки к действию сильных кислот, щелочей, окислителей, спиртов, могут использоваться при температуре от -250 °С до +200 °С.

Преимущество металлокерамических фильтрующих элементов – простота регенерации, большой срок работы (5-10 лет). В отличие от волокнистых, нетканных и фторопластовых фильтров, зернистые металлокерамические материалы имеют неизменную структуру, химически инертны, поддаются любым методам стерилизации, отличаются высокой механической прочностью, просты в изготовлении.

Мембранные фильтры патронного и кассетного типа несмотря на менее значительный срок службы (1 год) обладают высокой эффективностью, быстрой съёмностью, надёжны в работе. Отмечена способность рядом фильтрующих материалов, заряженных отрицательно, задерживать живые клетки, бактерии, вирусы, эритроциты, лимфоциты и тромбоциты.

Частицы, размер которых меньше величины пор фильтрующего материала, остаются на фильтре, если дзета-потенциал (электрический потенциал) частиц и стенок пор фильтра имеет противоположные заряды. Это явление наблюдается при использовании в качестве фильтрующих элементов мембран с соответствующими электростатическими свойствами.

Выбор фильтрующего материала зависит от объекта фильтрации и дзета-потенциала суспендированных частиц.

Отработанный воздух, отводимый из лабораторных и производственных помещений, контролируется на чистоту (отсутствие микроорганизмов).

Для обслуживания установок глубинного культивирования применяют автоматизированную модульную систему, включающую:

1) очистку и стерилизацию воздуха и пара с использованием металлокерамических и титановых фильтрующих элементов; модули технологической обвязки, содержащие автономную систему термостатирования, запорную и регулирующую арматуру, индивидуальные входные и выходные фильтры, электропневмообразователи и другие регулирующие устройства;

2) блок автоматического контроля и управления, содержащий программное устройство, преобразователи сигналов от измерительных электродов, газоанализаторы для измерения О2 , СО2 , еН, температуры, рСО2 , рО2 ;

3) системы цифровой и диаграммной индикации текущих параметров культивирования.

Установки глубинного культивирования снабжены блоками дистанционного измерения давления в биореакторе и его рубашке, блоками дистанционного контроля интенсивности аэрации воздухом или газовой смесью (кислорода и азота, кислорода и углекислого газа, воздуха и углекислого газа, азота и углекислого газа).

Блок автоматического управления позволяет контролировать и поддерживать на заданном уровне программную стерилизацию биореактора и арматуры, скорость вращения мешалки и дистанционный контроль открытия или закрытия вентилей и регулирующих клапанов.

Ряд стран специализируется на выпуске широкого ассортимента оборудования для культивирования различного назначения (фирма NBS – США; Полиферм, Биотек – Швеция; Марубиши – Япония; LH – Ферментейшн – Великобритания; Браун – Германия; БИОР-0,1, БИОР-0,2 – Россия, институт биологического приборостроения с опытным заводом АН РФ).

Заключение

Важным элементом в конструкции ферментера являются теплообменные устройства. Применение высокопродуктивных штаммов биообъектов, концентрированных питательных сред, высокий удельный расход мощности на перемешивание — все эти факторы сказываются на существенном возрастании тепловыделений, и для отвода тепла в ферментаторе устанавливают наружные и внутренние теплообменные устройства.

Промышленные ферментаторы, как правило, имеют секционные рубашки, а внутри аппарата — четыре змеевика.

Разработчики аппаратуры в нашей стране и за рубежом постоянно совершенствуют конструкции биореакторов. Так, например, фирма New Brunswick Scientific Co., Inc. (США) предложила следующие типы ферментаторов:

Био-Фло III — для периодического и непрерывного культивирования микробных, животных и растительных клеток, совмещенный с микропроцессором и персональным компьютером;

Микрос I — для культивирования микроорганизмов (совмещен с микропроцессором) и промышленные ферментаторы емкостью от 40 до 4000 литров и более (совмещены с микропроцессорами).

В Датской мультинациональной компании Gist-Brocades в 1987 г. сконструирован и изготовлен самый большой промышленный ферментатор для производства пенициллина (200 м3 ).

Список литературы

1. dic.academic.ru

2. www.biotechprogress.ruъ

3. www.maps.su

4. www.mediana-eco.ru

5. Биотехнология: Учебное пособие для ВУЗов /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987, стр. 15-25.

6. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

7. Производство белковых веществ. Биотехнология. Кн. 5 : учеб. пособие для вузов / [В.А.Быков и др.]. – М.: Высш. шк. – 1987. – 142 с.

8. Сазыкин Ю. О. Биотехнология: учебное пособие для студентов высш. учеб. заведений / Ю.О. Сазыкин, С. Н. Орехов, И.И. Чакалева; под ред. А.В. Катлинского. – 3-е изд., стер. – М.: Издательский центр “Академия”, 2008.

9. Северин С.Е. Биохимия и медицина – новые подходы и достижения / С.Е. Северин. – М.: Русский врач, 2006. – 94 с.

Приложение

Рис. 1 Схема биореактора ( по А.Я. Самуйленко, Е.А. Рубану)

Рис. 2 Упрощенные схемы биоректоров различных типов (по Б. Глику, Дж. Пастернаку):

А – реактор с механическим перемешиванием

Б – барботажная колонна

В – эрлифный реактор с внутренней циркуляцией

Г – эрлифный реактор с внешней циркуляцией

Стрелки – направление потока культуральной среды.

Источник: https://www.bestreferat.ru/referat-146496.html

Конструкция биореакторов

Биореакторы: Биореакторы — это аппараты, в которых осуществляются биохимические

Для создания оптимальной биореакторной системы необходимо точно придерживаться следующей генеральной линии:

1. Биореактор должен быть сконструирован так, чтобы исключить попадание загрязняющих микроорганизмов, а также обеспечить сохранение требуемой микрофлоры.

2. Объем культивируемой смеси должен оставаться постоянным, т. е. чтобы не было утечки или испарения содержимого.

3. Уровень растворенного кислорода должен поддерживаться выше критических уровней аэрирования культуры аэробных орга­низмов.

4. Параметры внешней среды, такие, как температура, рН и т. п., должны постоянно контролироваться.

5. Культура при выращивании должна хорошо перемеши­ваться.

К материалам, используемым при конструировании сложных биореакторов, предъявляются определенные тре­бования:

а) все материалы, вступающие в контакт с растворами, подающими­ся в биореактор, соприкасающиеся с культурой микроорганизма, должны быть устойчивыми к коррозии, чтобы предотвратить загрязнения метал­лами даже в следовых количествах;

б) материалы должны быть нетоксичными, чтобы даже при самой малой растворимости они не ингибировали рост культуры;

в) компоненты и материалы биореактора должны выдерживать по­вторную стерилизацию паром под давлением;

г) перемешивающая система биореактора и места поступления и вы­хода материалов и продуктов должны быть легко доступными и доста­точно прочными, чтобы не деформироваться или ломаться при механи­ческих воздействиях;

д) необходимо обеспечить визуальное наблюдение за средой и культурой, так что материалы, используемые в процессе, по возможности должны быть прозрачными.

Для оптимизации биотехнологических процессов требуется постоянный и тщательный контроль за изменяющейся картиной ферментации, что обеспечивается наличием в биореакторах соответствующих датчи­ков, позволяющих осуществлять избирательный анализ определенных параметров ферментационного процесса. Неотъемлемой частью боль­шинства ферментаций является та или иная степень компьютеризации.

Важным классификационным принципом биореакторов различного типа являются системы перемешивания. По способу перемешивания и аэрации биореакторы под­разделяются на аппараты с механическим, пневматическим и циркуля­ционным перемешиванием.

Наиболее распростра­ненные конструкции в современной микробиологической промышлен­ности – аппараты с механическим перемешиванием (рис.2.). Такие реакторы имеют механическую мешалку с центральным валом и лопастями (лопатками), число которых обычно равно 6, реже 8.

Лопасти могут быть прямыми или изогнутыми, часто их располагают в несколько ярусов, что обеспечивает более эффективное перемешивание больших объемов жидкости. В систему входят также отражательные пе­регородки – узкие металлические пластинки, прикрепленные к внутрен­ним стенкам биореактора.

Они предотвращают возникновение водоворо­тов и обеспечивают вихревое движение жидкости, равномерно распреде­ляемое но всему объему реактора.

Аэрация может осущест­вляться также путем барботажа – подачи воздуха снизу через горизонтальную трубку с отверстиями, иногда аэрирование достигается применением специальных вибраторов, которые обеспечивают высокую степень асеп­тики, малый расход энергии и относительно слабо травмируют клетки.

В аппаратах с пневматическим перемешиваниеммешалка отсутствует, и перемешивание жидкости осуществляется пузырьками газа.

Рис. 2.Схема устройства биореактора с механическим перемешиванием

1- Крышка люка. 2 – Мешалка. 3 – Крыльчатка. 4 – Отражательная перегородка. 5 – Выход воздуха. 6-7 – Окно для наблюдения. 8-12 – Стерильные соединения. 13 – Ввод пробы. 14 – Муфта для рН электрода. 15 – Карман для термометра. 16 – Сливной кран (для ферментеров емкостью более 2000 литров). 17 – Двойная рубашка. 18-19 – Сочленения для пара и охлаждающей воды. 20 – Слив.

Естественно, что скорость массообмена в них намного ниже, чем в ферментерах с механическим перемешиванием.

Классическим аппаратом такого типа является эрлифтный реактор (air lift – подъем воздуха). Биореакторы с пневматическим перемешива­нием характеризуются более мягким (плавным) перемешиванием содер­жимого и получили распространение при выращивании клеток животных и растений.

Биореакторы циркуляционного типа осна­щены насосами и эжекторами, создающими направленный ток жидкости по замкнутому контуру (кругу).

Жидкость увлекает за собой пузырьки газа и тем самым культуральная среда одновременно с перемешиванием можетнасыщаться либо атмосферным кислородом, либо (с использова­нием специальных устройств и эжекторов) газом иного типа.

Эти биореакторы отличаются простотой конструкции и надежностью в эксплуатации.

В последнее время разрабатываются новые способы аэрации. На­пример, воздух может подаваться через специальные полипропиленовые мембраны. Это позволяет избегать ценообразования, и очень хорошо за­рекомендовало себя при выращивании клеток эукариотических организ­мов, в частности при промышленном получении интерферона.

Теплообмен в биореакторах осуществляется с помощью труб с охлаждающим или нагревающим агентом, которые оплетают аппарат и образуют так назы­ваемую рубашку реактора. Иногда эта система труб располагается непо­средственно в полости ферментера. Нагревающими агентами в промыш­ленных биореакторах служат горячая вода или пар, в лабо­раторных ферментерах чаще используется электрический подогрев.

Система пеногашения биореактора – это средство борьбы с избыточным пенообразованием. Существуют химические, механические, акустические и другие виды пеногашения. Наиболее часто применяют химические и механические способы.

К химическим средствам пеногашения относятся поверхностно активные вещества, которые, внедряясь в стенки пузырей, становятся центрами их неустойчивости. Эффективными пеногаситслями служат растительные масла и животные жиры.

Недостатком этих пеногасителей является то, что при их утилизации микробными клетками сами по себе способствуют пенообразованию.

Механические пеногасители представляют собой различные устрой­ства, сбивающие пену: диски, лопасти, барабаны, располагающиеся в верхней части реактора. Более сложными приспособлениями являются сепараторы пены, которые одновременно служат для сбора биомассы, содержащейся в пенном слое.

Устройства и режим стерилизации определяется конструкцией био­реактора, вспомогательного оборудования, используемых питательных сред и т. п. Наибольшее значение имеют термический метод стерилиза­ции оборудования и сред и фильтрационный способ, применяемый для удаления микроорганизмов из подаваемого в ферментеры воздуха или другого газа.

Технология производственного процесса отрабатывается поэтапно: в лабораторных, пилотных (опытно-промышленных) и промышленных ус­тановках.

Чаще встречаются аппараты с объемами ферменторной каме­ры: 0,5-100 л (лабораторные), 100-5000 л (лабораторно-промышленные) и 5000-1 000 000 л и более (промышленные).

На каждом этапе увеличения масштаба фер­ментации решаются конкретные задачи отработки (на­лаживания) производства и его оптимизации.

С помощью лабораторных биореакторов решаются следующие задачи:

1) кинетические – определение скорости роста клеток, эффектив­ности утилизации субстратов и образования целевого продукта;

2) некоторые массообменные – расчет коэффициентов массопередачи, скорость поступления в среду О2 и других газов, скорость освобож­дения от газообразных продуктов, образующихся при культивировании продуцентов (в первую очередь СО2);

3) определение коэффициентов реакций, связывающих утилизируе­мые субстраты и О2 с получаемыми целевым и побочными продуктами.

Лабораторно-промышленные установки используют для поиска наиболее целесообразных технологий и в общих чертах моделирования промышленного процесса. Поэтому на данном этапе стараются приме­нять тот тип аппарата, который предполагается использовать в промыш­ленном масштабе.

Предыдущая12345678910Следующая

Дата добавления: 2016-06-02; просмотров: 1732; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/8-22112.html

Medic-studio
Добавить комментарий