Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Содержание
  1. Выявление дальтонизма — проверка цветовосприятия
  2. О дальтонизме
  3. Причины
  4. Виды дальтонизма
  5. Врожденный дальтонизм
  6. Приобретенный дальтонизм
  7. У детей
  8. Пример заданий
  9. Полихроматический метод
  10. Таблицы Рабкина
  11. Метод Ишихара
  12. Таблицы Штиллинга
  13. Пороговые таблицы Юстовой
  14. Спектральный метод — диагностика на анамалоскопе
  15. Электофизиологический метод
  16. Проверка зрения на цветовосприятие для водителей
  17. Лечение нарушения цветовосприятия
  18. Цветовое зрение — Медицинская энциклопедия
  19. Проверка зрения на цветовосприятие для водителей
  20. Зачем нужна данная проверка
  21. Когда проводится тест на цветовосприятие
  22. Таблица Рабкина — что это, принцип действия
  23. Таблица Рабкина — на цветоощущение с ответами
  24. Трактовка результатов теста
  25. Как водителю хорошо пройти тестирование на цветоощущение
  26. Что делать, если у водителя выявлены нарушения
  27. Ограничения в деятельности у людей с нарушениями цветовосприятия
  28. Физиология цветоощущения
  29. Физическая сущность света и цвета
  30. Восприятие цвета глазом
  31. Оценка цвета
  32. Цветовые пространства
  33. Физиология рецепторов сетчатки
  34. Интересные факты о цветном зрении человека. Доставка контактных линз и очков по Москве и России
  35. Особенности цветового зрения человека
  36. Интересные факты о цветном зрении
  37. Иллюзии цветового зрения
  38. Исследование цветового зрения: особенности проведения

Выявление дальтонизма — проверка цветовосприятия

Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Цветовая слепота возможна даже при отличном зрении. Просто в сетчатке не хватает пигмента, он не вырабатывается.

В большинстве случаев это не особо мешает жить, иногда человек даже не догадывается о своей особенности, особенно если это не ярко выраженная патология.

Но есть ситуации, когда от нормального цветовосприятия зависит чересчур много. Как проводят проверку зрения на цветовосприятие читайте в статье.

О дальтонизме

Своим названием патология обязана английскому ученому Джону Дальтону, описавшему один из ее видов, которым страдал сам и трое его братьев — они не различали красный цвет. Долгое время было неизвестно о других видах дальтонизма.

Причины

В сетчатке расположены нервные клетки, которые отвечают за цветовосприятия, их называют колбочками, и их существует три вида. В каждом из этих видов имеется свой цветочувствительный пигмент белкового происхождения — красный, синий с желтым и зеленый. При здоровом зрении этих пигментов достаточно, при дальтонизме нет.

Эта патология сцеплена с Х-хромосомой, передается от матери — носителя патологического гена к сыну. У мужчин нет «запасной», здоровой Х-хромосомы, поэтому и заболевание встречается у них намного чаще.

Виды дальтонизма

Раньше думали, что дальтоники видят весь мир в черно-белом изображении. Другие утверждают, что дальтоники не различают красный и зеленый цвет. Третьи рассказывают еще какие-то домыслы. На самом деле, видов дальтонизма больше, степень выраженности тоже разная. И важно определить его как можно раньше.

Люди со здоровым цветовосприятием называются трихроматы.

При недостатке в сетчатке одного пигмента развивается состояние, именуемое дихромазией. При нехватке или отсутствии красного пигмента возникает протанопия, если нет зеленого — дейтеранопия, при отсутствии синего — тританопией.

Намного реже встречается отсутствие двух пигментов в колбочках, «монохромия», и как критический случай — ахроматопсия, когда весь мир для человека сливается в серый цвет.

Врожденный дальтонизм

Большей частью эта патология встречается у мужчин. Это наследственная патология, при которой нарушаются функции зрительного аппарата. В среднем встречается у 1 из 100 мужчин и 1 из 300 женщин. Наиболее распространенный — легкой формы, при которой все цвета воспринимаются практически нормально, только в более бледной раскраске.

Возникает такая патология уже во время зачатия, причины ее появления пока неясны. Известно только, что видов цветовой слепоты несколько.

В сетчатке глаза у человека не хватает определенного пигмента, из-за этого глаз и не может воспринимать отсутствующий цвет, видит его более блеклым или даже серым.

А так как в природе практически не встречаются чистые тона, в основном они смешаны, то в цветовосприятии дальтоника и происходит сбой по всем остальным цветам. Светлые оттенки такой человек видит практически белыми, а синий и желтый для него выглядят одинаковыми.

Хотя есть и компенсаторные свойства глаза. Люди с такой особенностью зрения различают намного больше оттенков того цвета, который нормальному цветовосприятию кажется одинаковым. Обыкновенная зеленая трава или листва для дальтоника бывает полной разнообразных оттенков. В далеком прошлом это помогало нашим пращуры легче находить добычу.

Приобретенный дальтонизм

Даже здоровый глаз может получить повреждения, при котором перестает видеть мир как раньше. В нем нарушается способность различать цвета. Это случается при травме, различных офтальмологических заболеваниях, сильном стрессе.

Патология может возникнуть и при состояниях, не связанных с заболеваниями глаз, одной из причин бывает онкология головного мозга или общее поражение нервной системы.

Необходимо проводить комплексное исследование причин такого поражения глаз.

Приобретенный дальтонизм встречается с одинаковой частотой у мужчин и женщин. Часто он развивается настолько медленно, что человек успевает приспособиться к изменению цветоощущения и не догадывается о своем новом состоянии. Выявляется оно уже во время осмотров у врача. Но бывает и стремительное развитие патологии.

Случается и развитие дальтонизма только на одном пораженном глазу. Чаще всего у человека теряется способность различать синий и желтый цвета, они выглядят одинаково серыми. Хотя бывают и случаи, при которых глаз перестает различать синий и красный.

С быстро протекающим приобретенным дальтонизмом встречался практически каждый — когда после яркой вспышки света глаз на несколько минут начинал видеть предметы в искаженном виде. Это же происходит и при небольших сотрясениях. Такое состояние несложное, проходит само собой и не требует никакого лечения.

При приобретенном дальтонизме есть вероятность, что при определенных условиях глаз снова начнет воспринимать цвета правильно. Есть система восстановления зрения для приобретенного дальтонизма, важно только выявить его вовремя.

У детей

С самого начала родителей должно насторожить, если ребенок изображает привычные вещи в неестественной для них цветовой гамме. Может так случиться, что в силу художественного воображения ребенку «остро необходимо» рисовать траву и листья одним и тем же неестественным для них цветом, к примеру малиновым.

Маленькие дети еще не могут пройти тесты как взрослые. В силу своего возраста они могут просто не знать названия цветов, и им все равно как их называть. Для них созданы специальные проверочные задания.

Ребенок не догадывается об особенностях своего зрения, о том, что остальные видят мир по другому. Поэтому диагностика у него осложнена этими обстоятельствами.

Пример заданий

  • Перед ребенком кладут два одинаковых по форме однотонных предмета, один яркого цвета, другой серый. Смотрят, какой из них заинтересует малыша.
  • Малышу предлагают дораскрасить картинку, где уже начали раскрашивать определенные фрагменты. Для здорового цветовосприятия такое задание не составит сложностей, ребенок с патологией с заданием не справится, будет в замешательстве.
  • Положить перед ребенком разные предметы, попросить рассортировать по цвету. Ребенок с патологией начнет путаться. Зеленый положит вместе с желтым, а синий с красным.

Для дальнейшей диагностики проводят более детальное обследование у офтальмолога. Применяют таблицы Рабкина, которые показывают степень выраженности и вид дальтонизма.

Определять наличие дальтонизма можно уже у деток с 3-4 лет. К школьному возрасту способность глаз различать цвета должна быть выявлена.

Если все же у ребенка такая особенность зрения есть, родителям прежде всего нужно успокоиться и перестать паниковать. Принять то, что их ребенок видит мир немного не так, как все остальные. И утешить себя тем, что малыш видит намного больше оттенков доступных его зрению цветов — это компенсаторное свойство зрения. Ребенку будут недоступны несколько профессий, но не более того.

Редко, но дальтонизм развивается и у родившихся здоровыми детей. Это происходит по причине травм, заболеваний глаз, при приеме некоторых лекарств.

Часто приобретенный дальтонизм у детей протекает с осложнениями, головными болями, поражениями нервной системы. И требует постоянного наблюдения у офтальмолога.

Для диагностики нарушения цветовосприятия существует несколько методов, разных по сложности и надежности диагностики.

Полихроматический метод

Он хорош тем, что дает очень точную диагностику. Если его проводят на компьютере, то экран монитора матовый и без бликов, которые есть в большинстве домашних компьютеров.

Представляет из себя метод рассматривание табличек с рисунками.

Впервые такой метод использовали в середине 30-х годов в СССР, изобрел его советский офтальмолог Рабкин — таблицы с зашифрованными на них изображениями и изображениями-ловушками.

Есть дублирующие этот метод таблицы других офтальмологов. Они необходимы при дополнительных проверках, когда у врача возникают сомнения в достоверности диагностики. В других таблицах большее внимание уделяется более четкой дифференциации поражения глаз.

Самые популярные и известные тесты на цветовосприятие — таблицы Рабкина, Юстовой и Ишихара. При проведении тестов исследуемый сидит на стуле спиной к источнику света. Таблицы демонстрируют на уровне его глаз на расстоянии 50-100 см. На рассматривание каждой картинки дается 10-15 секунд.

Кроме них есть проверки цветовосприятия по другим методикам, которые используются реже.

Таблицы Рабкина

Тест Рабкина состоит из 27 карточек-вопросов. На этих карточках изображены кружочки разного цвета и размера, а степень яркости у них одинаковая. Кружочками выложены разнообразные фигуры и цифры, которые испытуемый должен увидеть и назвать.

Чтобы человек лучше и легче понял, что от него требуется, на первых двух карточках изображены хорошо различимые предметы, которые видны и человеку с нормальным зрением, и дальтонику. Дальше различить будет сложнее.

Среди этих карточек есть и картинки-ловушки. При нормальном зрении будут видны одни изображения, дальтоник заметит другие, не видные для здоровых глаз.

Порядок показа карточек не может меняться, иногда симулянты пытаются скрыть свою патологию. Те, кто не желает показывать свой дальтонизм, «готовятся» к тестированию, заучивает порядок ответов.

Это совершенно бессмысленно, врач при малейшем подозрении предложит пройти другое тестирование.

При помощи таких таблиц выявляется и то, какой вид дальтонизма есть у человека, какого пигмента не хватает в глазу.

Есть еще один вид этого теста — на таблицах вместо цифр изображены фигуры. Человек с нарушенным зрением увидит вместо одной — другую. На основе этого можно будет судить о виде дальтонизма у исследуемого.

Бессмысленно проходить подобные тесты онлайн через монитор компьютера. Все цвета вы будете видеть в искаженном виде и точной информации такая проверка не даст.

Метод Ишихара

Он похож на предыдущий тест, но только в более суженном варианте. В нем используются немного другие картинки для проверки зрения на цветовосприятие, но они тоже дают точную картину происходящего со зрением. Методика используется реже, поэтому людям с цветовой слепотой, желающим обмануть врача, будет труднее это сделать.

Человеку предлягаются таблички, на которых изображены небольшие круги одного цвета и цифры, простые картинки, фигуры другого. Испытуемуму нужно определить, что изображено на карточке. Метод хорошо определяет цветовую слепоту в красном и зеленом спектре.

Этот метод был разработан в разгар I Мировой войны для военных нужд. Сначала Ишихаре приходилось вручную рисовать свои тесты, чтобы испытуемые могли найти спрятанную на таблице картинку, нарисованную разноцветными точками, которая отличалась от остальных только цветом.

Таблицы Штиллинга

Сейчас применяется редко. Этот тест был разработан в 1878 году немецким офтальмологом Штиллером и был в числе первых по определению цветовой слепоты.

Этот метод основан на принципе псевдоизохроматизма — когда два разных цвета воспринимаются как один. Исследуемым предлагалось рассортировать по цвету различные предметы. Сначала это были мотки шерсти, потом появились и другие предметы.

С появлением таблиц Рабкина и Ишихара метод перестали использовать как неактуальный.

Пороговые таблицы Юстовой

По сравнению с другими тестами, этот поменьше — всего 12 таблиц. Их используют если у врача есть сомнения в постановке окончательного диагноза. Основан метод на различении точек с минимально насыщенной яркостью.

Они помогают установить какого именно пигмента не хватает в глазу. Карточки разбиты по группам, на каждой изображены разорванные квадратики, в середине которых изображен обрис квадрата без одной стороны, он немного отличается по цвету.

Задача испытуемого определить, где находится разрыв.

Особенностью этих карточек является поэтапное уменьшение порога различия между цветом ячеек основного квадрата и фигуры всередине.

Главный плюс этой проверки — ее невозможно сфальсифицировать.

Спектральный метод — диагностика на анамалоскопе

В сомнительных ситуациях врач предложит пациенту пройти испытание на анамалоскопе — приборе, который снабжен специальными цветовыми фильтрами.

На специальный матовый экран выводится один цвет, который испытуемый должен подобрать на втором экране. Цвета возникают случайно, их порядок выучить невозможно. Здоровый человек легко справится, дальтоник нет.

Электофизиологический метод

Это компьютерная диагностика разнообразных нарушений работы колбочек. При нем на сетчатку воздействуют световыми лучами.

Этот метод включает в себя и способность глаза правильно различать все оттенки белого цвета и поле зрения.

Проверка зрения на цветовосприятие для водителей

Есть профессии, где от правильного цветовосприятия одного человека зависят жизни многих других. Люди со цветовой слепотой не имеют права ими заниматься. Одна из таких профессий — водитель любого транспорта. И водители проходят подобные тесты регулярно.

Самый первый раз — еще до поступления на курсы, чтобы какое-то число из претендентов отсечь сразу же. Такую проверку зрения на цветовосприятие для водителей проводят обязательно для профессионалов и для любителей. Проходить ее обязаны все водители, с мотоциклистами и велосипедистами включительно.

Проводят ее при помощи полихромных таблиц Рабкина. Для водителей проводят более сложное тестирование — помимо этих основных 27 таблиц используют дополнительные 22.

Эта профессия связана с постоянным напряжением зрения, поэтому со временем цветовосприятие может нарушиться. С возрастом цветовосприятие тоже падает — это физиологическое свойство глаз. Врач это выявит сразу же, и после прохождения реабилитации зрение может восстановиться.

Лечение нарушения цветовосприятия

Сейчас невозможно вылечить врожденный дальтонизм. Решить проблему пытаются давно. В 30-е годы в США разработали очки с линзами из неодимовых стёкол — они улучшали способность различать цвета.

Сейчас проводятся разнообразные исследования — при помощи генной инженерии в сетчатку обезьян добавляли недостающие гены, и животные стали лучше ориентироваться в цветовосприятии, эти исследования продолжаются.

При легких формах дальтонизма человеку предлагают очки со специальными многослойными линзами, которые улучшают цветовосприятие. Но это только первые шаги, и со временем проблема цветовой слепоты будет разрешена.

При приобретенном дальтонизме схема лечения разрабатывается индивидуально, все зависит от его вида и степени выраженности. Определяет его офтальмолог после тестирования.

  • Линзы Acuvue 42%, 23592359 42%2359 – 42% из всех
  • Линзы Air Optix 17%, 968968 17%968 – 17% из всех
  • Линзы Optima 16%, 911911 16%911 – 16% из всех
  • Линзы Pure Vision 12%, 666666 12%666 – 12% из всех
  • Линзы Biofinity 6%, 330330 6%330 – 6% из всех
  • Линзы Biotrue 4%, 243 голоса243 голоса 4%243 голоса – 4% из всех
  • Линзы Clariti 2%, 127127 2%127 – 2% из всех

Источник: https://BeregiZrenie.ru/daltonizm-kosoglazie/cvetovospriyatie/

Цветовое зрение — Медицинская энциклопедия

Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Цветово́е зрение

(синонимы: цветоощущение, цветоразличение, хроматопсия)

способность человека различать цвет видимых объектов.

В основе цветового восприятия лежит свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Видимая часть спектра светового излучения образована волнами различной длины, которые воспринимаются глазом в виде семи основных цветов, выделяемых в зависимости от длины волны света в три группы.

Длинноволновое световое излучение вызывает ощущение красного и оранжевого цвета, средневолновое — желтого и зеленого, коротковолновое — голубого, синего и фиолетового. Цвета разделяют на хроматические и ахроматические.

Хроматические цвета обладают тремя основными качествами: цветовым тоном, который зависит от длины волны светового излучения; насыщенностью, зависящей от доли основного цветового тона и примесей других цветовых тонов; яркостью цвета, т.е. степенью близости его к белому цвету. Различное сочетание этих качеств дает большое разнообразие оттенков хроматического цвета.

Ахроматические цвета (белый, серый, черный) различаются лишь яркостью. При смешении двух спектральных цветов с разной длиной волны образуется результирующий цвет. Каждый из спектральных цветов имеет дополнительный цвет, при смешении с которым образуется ахроматический цвет — белый или серый.

Многообразие цветовых тонов и оттенков может быть получено оптическим смешением всего трех основных цветов — красного, зеленого и синего. Количество цветов и их оттенков, воспринимаемых глазом человека, необычайно велико и составляет несколько тысяч.

Цвет оказывает воздействие на общее психофизиологическое состояние человека и в известной мере влияет на его трудоспособность. Наиболее благоприятное влияние на зрение оказывают малонасыщенные цвета средней части видимого спектра (желто-зелено-голубые), так называемые оптимальные цвета. Для цветовой сигнализации используют, наоборот, насыщенные (предохранительные) цвета.

Физиология Ц. з. недостаточно изучена. Из предложенных гипотез и теорий наибольшее распространение получила трехкомпонентная теория, основные положения которой впервые были высказаны М.В. Ломоносовым в 1756 г., а в дальнейшем развиты Юнгом (Т. Young, 1802) и Гельмгольцем (Н. L.F.

Helmholtz, 1866) и подтверждены данными современных морфофизиологических и электрофизиологических исследований.

Согласно этой теории в сетчатке глаза имеется три вида воспринимающих рецепторов, расположенных в колбочковом аппарате сетчатки, каждый из которых возбуждается преимущественно одним из основных цветов — красным, зеленым или синим, однако в определенной степени реагирует и на другие цвета.

Изолированное возбуждение одного вида рецепторов вызывает ощущение основного цвета. При равном раздражении всех трех видов рецепторов возникает ощущение белого цвета.

В глазу происходит первичный анализ спектра излучения рассматриваемых предметов с раздельной оценкой участия в них красной, зеленой и синей областей спектра. В коре головного мозга происходит окончательный анализ и синтез светового воздействия. В соответствии с трехкомпонентной теорией Ц. з. нормальное цветоощущение называется нормальной трихромазией, и лица с нормальным Ц. з. — нормальными трихроматами.

Одной из характеристик цветового зрения является порог цветоощущения — способность глаза воспринимать цветовой раздражитель определенной яркости. На восприятие цвета оказывает влияние сила цветового раздражителя и цветовой контраст. Для цветоразличения имеет значение яркость окружающего фона.

Черный фон усиливает яркость цветных полей, но в то же время несколько ослабляет цвет. На цветовосприятие объектов существенно влияет также цветность окружающего фона. Фигуры одного и того же цвета на желтом и синем фоне выглядят по-разному (явление одновременного цветового контраста).

Последовательный цветовой контраст проявляется в видении дополнительного цвета после воздействия на глаз основного. Например, после рассматривания зеленого абажура лампы белая бумага вначале кажется красноватой.

При длительном воздействии цвета на глаз отмечается снижение цветовой чувствительности сетчатки (цветовое утомление) вплоть до такого состояния, когда два разных цвета воспринимаются как одинаковые. Это явление наблюдается у лиц с нормальным Ц. з.

и является физиологическим, однако при поражении желтого пятна сетчатки, невритах и атрофии зрительного нерва явления цветового утомления наступают быстрее.

Нарушения Ц. з. могут быть врожденными и приобретенными. Врожденные расстройства цветового зрения наблюдаются чаще у мужчин. Они, как правило, стабильны и проявляются понижением чувствительности преимущественно к красному или зеленому цвету.

В группу лиц с начальными нарушениями цветового зрения относят и тех, кто различает все главные цвета спектра, но имеет пониженную цветовую чувствительность, т.е. повышенные пороги цветоощущения. Согласно классификации Криса — Нагеля, все врожденные расстройства Ц. з. включают три вида нарушений; аномальную трихромазию, дихромазию и монохромазию.

При аномальной трихромазии, которая встречается наиболее часто, наблюдается ослабление восприятия основных цветов: красного — протаномалия, зеленого — дейтераномалия, синего — тританомалия. Дихромазия характеризуется более глубоким нарушением Ц. з.

, при котором полностью отсутствует восприятие одного из трех цветив: красного (протанопия), зеленого (дейтеранопия) или синего (тританопия). Монохромазия (ахромазия, ахроматопсия) означает отсутствие цветового зрения или цветовую слепоту, при которой сохраняется лишь черно-белое восприятие. Все врожденные расстройства Ц. з.

принято называть дальтонизмом, по имени английского ученого Дальтона (J. Dalton), страдавшего нарушением восприятия красного цвета и описавшего это явление. Врожденные нарушения Ц. з. не сопровождаются расстройством других зрительных функций и выявляются лишь при специальном исследовании.

Приобретенные расстройства Ц. з. встречаются при заболеваниях сетчатки, зрительного нерва или ц.н.с.; они могут наблюдаться в одном или обоих глазах, обычно сопровождаются нарушением восприятия трех основных цветов сочетаются с другими расстройствами зрительных функций. Приобретенные расстройства Ц. з.

могут проявляться также в виде ксантопсии (Ксантопсия), эритропсии (Эритропсия) и цианопсии (восприятие предметов в синем цвете, наблюдающееся после удаления хрусталика при катаракте). В отличие от врожденных нарушений, имеющих постоянный характер, приобретенные расстройства Ц. з.

исчезают с устранением их причины.

Исследование Ц. з. проводят преимущественно лицам, профессия которых требует нормального цветоощущения, например занятых на транспорте, в некоторых отраслях промышленности, военнослужащих отдельных родов войск.

С этой целью применяют две группы методов — пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов).

Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством Ц. з., различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые им фигурные или цифровые изображения (рис.).

Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств Ц. з. и отличия их от приобретенных. Существует также контрольная группа таблиц — для уточнения диагноза в сложных случаях.

При выявлении нарушений Ц. з. используют также стооттеночный тест Фарнсуорта — Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга.

От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении Ц. з. кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом.

Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

Более тонким методом диагностики расстройств Ц. з. является аномалоскопия — исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности Ц. з.

Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чисто-красного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). Человек с нормальным Ц. з.

правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением Ц. з. с этой задачей не справляется. Метод аномалоскопии позволяет определить порог Ц. з. раздельно для красного, зеленого, синего цвета, выявить нарушения Ц. з., диагностировать цветоаномалии.

Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношения зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он меньше 0,7, при дейтераномалии — больше 1,3.

Библиогр.: Луизов А.В. Цвет и свет, Л., 1989, биолиогр.; Многотомное руководство по глазным болезням под ред. В.Н. Архангельского, т. 1, кн. 1, с. 425, М., 1962; Пэдхем Ч. и Сондерс Дж. Восприятие света и цвета, пер. с англ., М., 1978; Соколов Е.Н. и Измайлов Ч.А. Цветовое зрение, М., 1984, библиогр.

Рис. б). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы).

Рис. а). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы).

Рис. г). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг).

Рис. в). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг).

Источник: Медицинская энциклопедия на Gufo.me

Источник: https://gufo.me/dict/medical_encyclopedia/%D0%A6%D0%B2%D0%B5%D1%82%D0%BE%D0%B2%D0%BE%D0%B5_%D0%B7%D1%80%D0%B5%D0%BD%D0%B8%D0%B5

Проверка зрения на цветовосприятие для водителей

Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Проверка зрения на цветовосприятие для водителей проводится при медицинском осмотре под руководством врача-офтальмолога. Зрение человека воспринимает информацию. Цветоощущение является важным моментом.

Чаще всего с данным понятием сталкиваются люди при прохождении медицинской комиссии для получения водительского удостоверения.

Медицинский осмотр водителей является обязательным для всех без исключения. Законом предусмотрены порядок и правила его проведения.

Заключение врача-офтальмолога выдается на основании проверки зрения по следующим направлениям:

С пониманием процесса проверки остроты зрения, как правило, вопросов не возникает. Касательно пункта проверки на цветоощущение, уточнения и разъяснения,  то понадобится водителям, готовящимся к прохождению осмотра.

https://www.youtube.com/watch?v=XcBl7oedxAU

Цветоощущение человека определяется наследственностью. В центральной части сетчатки здорового пациента находятся чувствительные к цвету нервные рецепторы, так называемые колбочки. Каждая колбочка содержит пигменты белкового происхождения. Таких пигментов всего три.

Задача специалиста, проводящего осмотр, определить норму или выявить аномалии цветоощущения. Для этих целей проводится тестирование.

По результатам тестирования безошибочно выявляют типы цветового зрения:

  1. Нормальный тип — трихромат. Все три пигмента (красный, зеленый и синий) присутствуют.
  2. Аномальный тип — дихромат. Присутствуют только два из трех возможных пигментов.
  3. Аномальный тип — ахромат. Полное отсутствие цветочувствительных пигментов.

Зачем нужна данная проверка

Неправильное цветоощущение или цветовая слепота затрудняет, а иногда совсем исключает возможность заниматься определенным видом деятельности конкретномучеловеку. Дальтонизм зачастую является причиной отстранения от обязанностей, где восприятие цвета — основная и неотъемлемая часть работы.

Лица, управляющие транспортными средствами, относятся к данной категории. Водитель обязан правильно реагировать на цветовые сигналы, так как это напрямую связано с безопасностью на дорогах. Сигналы светофора и дорожные знаки не воспринимаются в должной мере.

Дальтонизм транспортного работника в 1975 году в Швеции стал причиной крушения поезда. Данное событие положило начало исследованиям в этом направлении, и был разработан первый тест на дальтонизм для работников транспорта.

Но в течение жизни и профессиональной деятельности у некоторых людей, возможно его изменение. Поэтому проверка офтальмологом на цветоощущение, как и остроту зрения, обязательна и предполагает определенную периодичность (медосмотры).

Когда проводится тест на цветовосприятие

Цветовое восприятие является важной составляющей здорового зрения, залогом правильной реакции человека на окружающие обстоятельства и адекватную оценку действительности, что так необходимо при управлении транспортным средством.

При прохождении медицинского осмотра, каждый водитель обязан посетить врача-офтальмолога. Специалист исследует параметры зрения, включающие помимо его остроты тест на цветоощущение.

Для получения правильного результата проверки цветоощущения, требуется соблюдение определенных правил:

  1. Естественное освещение в помещении (запрещается проводить тестирование при искусственном освещении).
  2. Самочувствие исследуемого должно быть нормальным, отдохнувшим.
  3. Не должно быть попадания прямых солнечных лучей.
  4. Тестовые задания должны располагаться на расстоянии 1-го метра в строго вертикальном положении.
  5. Время на каждое изображение дается не более нескольких секунд.

Таким образом, если вы собираетесь управлять транспортным средством или ваша профессиональная деятельность напрямую связана с распознаванием цветовых сигналов, то вам, предстоит пройти тестирование на цветовое восприятие.

С возрастом также может возникнуть потребность провести подобную диагностику, так как параметры вашего зрения меняются.

В случае получения травм различного характера затрагивающих зрительный аппарат, специалист-офтальмолог,  будет наблюдать и отслеживать тенденции изменений вашего цветовосприятия с помощью тестирования.

https://medglaza.ru/profilaktika/diagnostika/proverka-tsvetovospriyatie-voditelej.html

Таблица Рабкина — что это, принцип действия

Простым диагностическим методом выявления аномального зрения является спектральный способ.

Таблицы Рабкина помогают определить и точно дифференцировать три формы отклонения в цветоощущении:

  • дейтераномалию — нарушение восприятия зеленого спектра;
  • протаномалию — нарушение восприятия красного спектра
  • тританомалия — нарушение восприятия синего.

В каждой из аномалий определяется три степени:

  • А — сильная;
  • В — средняя;
  • С — легкая.

При дальтонизме, частичном или полном отсутствии восприятия цветов, тестируемый человек не различает отдельные цвета и видит однородный рисунок. В то время как каждое изображение состоит из большого количества разноцветных кружков и точек одинаковой яркости, но разнящихся по цвету.

Таблица Рабкина — на цветоощущение с ответами

Таблица Рабкина тест на цветоощущение дает возможность выявить форму и степень дальтонизма.

Тест и ответы:

  • норма (тип трихромат)- 96;
  • протаномал-96;
  • дейтераномал- 96.

Таблица демонстрирует метод тестирования, имеет особое значение и является контрольной. Она необходима для понимания принципа прохождения теста. То есть, картинку одинаково видят люди с нормальным цветоощущением и дальтоники.

  • норма (тип трихромат) — треугольник и круг;
  • протаномал — треугольник и круг;
  • дейтераномал- треугольник и круг.

Изображение помогает выявлению симуляции. Картинка воспринимается идентично каждой группой испытуемых.

  • норма (тип трихромат) — 9;
  • протаномал-5;
  • дейтераномал- 5.
  • норма (тип трихромат) -треугольник;
  • протаномал-круг;
  • дейтераномал- круг.
  • норма (тип трихромат) — 13;
  • протаномал-6;
  • дейтераномал- 6.
  • норма (тип трихромат) — круг и треугольник;
  • протаномал -не воспринимает;
  • дейтераномал- не воспринимает.
  • норма (тип трихромат) — 96;
  • протаномал-96;
  • дейтераномал- 6.
  • норма (тип трихромат) -5;
  • протаномал—;
  • дейтераномал- -.
  • норма (тип трихромат) -9;
  • протаномал-6 или 8;
  • дейтераномал- 9.
  • норма (тип трихромат) -136;
  • протаномал-66, 68 или 69;
  • дейтераномал- 66, 68 или 69.
  • норма (тип трихромат) -треугольник и круг;
  • протаномал-треугольник;
  • дейтераномал- круг/круг и треугольник.
  • норма (тип трихромат) -12;
  • протаномал-12;
  • дейтераномал- -.
  • норма (тип трихромат) -треугольник и круг;
  • протаномал-круг;
  • дейтераномал- треугольник.
  • норма (тип трихромат) -30;
  • протаномал-10, 6;
  • дейтераномал- 1, 6.
  • норма (тип трихромат) -справа треугольник, слева круг;
  • протаномал-вверху два треугольника, внизу квадрат;
  • дейтераномал- слева вверху треугольник, квадрат внизу.
  • норма (тип трихромат) -96;
  • протаномал-9;
  • дейтераномал- 6.
  • норма (тип трихромат) — треугольник и круг;
  • протаномал-треугольник;
  • дейтераномал- круг.
  • норма (тип трихромат) -горизонтально восемь одноцветных квадратов, вертикально раноцветные квадраты;
  • протаномал -вертикально одноцветные квадраты в 3, 5, 7 ряду, горизонтально раноцветные квадраты;
  • дейтераномал- вертикально одноцветные квадраты в 1, 2, 4, 6, 8 ряду, горизонтально раноцветные квадраты.
  • норма (тип трихромат) -95;
  • протаномал-5;
  • дейтераномал- 5.
  • норма (тип трихромат) -круг и треугольник;
  • протаномал-ничего;
  • дейтераномал- ничего.
  • норма (трихромат) -вертикальные шесть одноцветных квадратов, горизонтальные разноцветные ряды.
  • норма (трихромат) -66;
  • протаномал-6;
  • дейтераномал- 6.
  • норма (трихромат) -36;
  • протаномал-36;
  • дейтераномал- 36;
  • при выраженной приобретенной патологии цифра не видна.
  • норма (трихромат) -14;
  • протаномал-14;
  • дейтераномал- 14;
  • при выраженной приобретенной патологии цифра не видна.
  • норма (трихромат) -9;
  • протаномал-9;
  • дейтераномал- 9;
  • при выраженной приобретенной патологии цифра не видна.
  • норма (трихромат) -4;
  • протаномал-4;
  • дейтераномал- 4;
  • при выраженной приобретенной патологии цифра не видна.
  • норма (трихромат) — 13;
  • протаномал -ничего;
  • дейтераномал- ничего.

Трактовка результатов теста

Для выявления отклонений достаточно проверки с помощью 27 изображений. В случае симуляции или при других обстоятельствах, на усмотрение специалиста применяются контрольные таблицы (еще 20) для точного установления проблемы.

В первую очередь выявляется ослабленное восприятие тестируемым пациентом зеленого либо красного цветов. Данное отклонение считается аномалией и называется дихромазией.

Дихромазия предполагает нарушения цветовосприятия и различие не всех цветов.

Выделяют:

  1. Отсутствие цветовосприятия красного цвета, называемое протанопией. Протанопия характеризуется более темным видением красного цвета и его слиянием с темно-зеленым и темно-коричневым. При этом зеленый цвет становится приближенным к светло-серому, свело-желтому и светло-коричневому. Причиной отклонения является отсутствие фоточувствительного пигмента в глазной сетчатке.
  2. Отсутствие цветовосприятия зеленого цвета, называемое дейтеранопией. Дейтеранопия предполагает отсутствие отличия зеленого от свело-оранжевого и светло-розового. А красный цвет может восприниматься светло-зеленым и светло-коричневым.

Протанопия и дейтеранопия — это врожденные нарушения к цветовых рецепторах. Тританопия встречается намного реже, чаще всего имеет приобретенный характер.

Затем происходит классификацияформы аномалии по трем типам:

  1. Полное отсутствие восприятия красного и зеленого цветов относится к типу А.
  2. Значительные проблемы цветоощущения относятся к типу В.
  3. Незначительные отклонения в цветоощущении предполагают тип С.

Дополнительно к вышеуказанным отклонениям при помощи таблиц распознаются более редко встречающиеся виды:

  • монохромазия (при этом не воспринимаются все три цвета);
  • аномальная трихромазия (невозможность определить различие оттенков трех цветов, при определении трех основных цветов и при сниженном наличии пигментов).

Таким образом, если у вас присутствуют все три пигмента, вы способны правильно различить основные цвета (красный, зелёный и синий). Если какой-либо из них отсутствует, то вы страдаете различного вида дальтонизмом.

Как водителю хорошо пройти тестирование на цветоощущение

При отсутствии отклонений прохождение теста не требует дополнительной подготовки и особых усилий со стороны тестируемого.

Вам необходимо соблюсти самые простые основные моменты:

  1. Общее состояние здоровья должно находиться в пределах нормы.
  2. Убедиться в достаточности и естественности освещения в месте проведения тестирования.
  3. Располагаться спиной к основному источнику света.
  4. Удостовериться, что изображение находиться на уровне ваших глаз.
  5. Рассматривать картинку быстро, отводя на каждую несколько мгновений.

Выявлениеотклонений не повод длярасстройства и тем более обиды на врача. Скорее всего, это призыв к действию. В данном случае специалист-офтальмолог не зачитывает вам приговор, а возможно старается прийти на помощь и оградить от гораздо больших неприятностей (например, аварий).

Нарушение цветоощущения не должно провоцировать на поиск обходных путей его прохождения. При патологии в восприятии цветов пройти тест успешно не представляется возможным. Заучивать таблицы бесполезно, так как изображения предоставляются выборочно и в любом порядке.

Понимание серьезности данного вопроса может повлиять не только на вашу безопасность, но и спасти жизни окружающих вас людей.Вероятность затруднения в определении смены сигнала светофора должна заставить задуматься о том, что вам не стоит рисковать и управлять транспортным средством или работать водителем.

Что делать, если у водителя выявлены нарушения

Выявляются два основных вида дальтонизма: врожденный и приобретенный. Врожденная патология сетчатки глаза, к сожалению, на данный момент исправлению не подлежит. Способ смотреть на мир одинаково с другими людьми для дальтоников заключается в ношении специально предназначенных контактных линз.

Ученые также работают над технологией внедрения соответствующих генов в клетки сетчатки глаза.

Возрастной дальтонизм является неизлечимым. Но иногда при замене хрусталика цветоощущение приходит в норму.

Если нарушение цветового зрения было вызвано повреждением химическим препаратом, существует вероятность полного выздоровления при его отмене.

Нередко причиной потери цветового зрения бывает травма. В этом случае результат восстановления видения цветов зависит от ее тяжести. Иногда происходит полное излечение, и зрение приобретает нормальное значение.

В целом отклонение цветоощущения от нормы само по себе не представляет опасности для здоровья человека. Однако если данная аномалия выявляется у лиц, чья профессиональная деятельность связана с распознаванием цвета, то необходимо серьезно отнестись к данному вопросу и найти более подходящий вид деятельности.

Ограничения в деятельности у людей с нарушениями цветовосприятия

Определенные профессии требуют обязательного прохождения проверки зрения на дальтонизм.

К ним относятся:

  • водители;
  • машинисты;
  • моряки;
  • летчики;
  • узкоспециализированные врачи.

Выявление отклонений зрения, связанных с дальтонизмом, не позволяет людям устраиваться на работу по данным специальностям или продолжать профессиональную деятельность.

Дальтонизм мешает правильно воспринимать и фиксировать дорожные сигналы. В некоторых странах лицам с диагнозом дальтонизм отказывают в предоставлении водительских прав.

На территории Российской Федерации в разные периоды времени правила, касающиеся выдачи водительских прав и присвоения определенной категории управления транспортным средством претерпевали некоторые изменения.

Tсли в 2012 году нарушение цветоощущения являлось причиной отказа в выдаче водительских прав независимо от их категории, то в 2014 году произошло снижение требований и основанием для отказа в управлении транспортным средством может служить только ахроматопсия.

Во всех странах Европейского союза ограничения при выдаче водительских удостоверений, связанные с дальтонизмом, отсутствуют. Исключением является Румыния.

Источник: https://MedGlaza.ru/profilaktika/diagnostika/proverka-tsvetovospriyatie-voditelej.html

Физиология цветоощущения

Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Цветоощущение (цветовая чувствительность, цветовое восприятие) – способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).

Цвет характеризуется тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).

Физическая сущность света и цвета

Светом или световым излучением называются видимые электромагнитные колебания.

Световые излучения подразделяются на сложные и простые.

Белый солнечный свет — сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.

Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.

Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10-9 м, т.е. одной миллиардной доли метра). 

Всю видимую часть спектра можно разделить на три зоны

  • Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
  • от 490 до 570 нм — зеленой;
  • от 580 до 720 нм — красной.

Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.

Все цвета делятся на ахроматические и хроматические

  • Ахроматические (бесцветные) — это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
  • Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.

Цветовой тон — это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.

Светлота субъективно характеризует яркость цвета.

Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).

Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.

Восприятие цвета глазом

Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).

Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра — синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью.

Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра.

При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.

При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого.

Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков — в случае большей мощности излучения зеленой зоне спектра.

Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон — ощущение желтого цвета, красной и синей зон — ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными.

Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.

Аддитивный синтез света

Это процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра — синего, зеленого и красного.

Эти цвета называются основными или первичными излучениями адаптивного синтеза.

Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов.

На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений.

Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.

Еще одна разновидность аддитивного синтеза — пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки.

Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек.

В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.

Субтрактивный синтез цвета

Это процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.

В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная — зеленые, а желтая — синие.

Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры.

Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски.

Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.

  • Основные цвета аддитивного синтеза — синий, зеленый и красный и
  • основные цвета субтрактивного синтеза — желтый, пурпурный и голубой образуют пары дополнительных цветов.

Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.

При аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.

Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра. 

Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.

Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.

Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.

В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета.

Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов.

Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.

Оценка цвета

Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений.

Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать.

Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый». 

Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.

Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности. 

Цветовые пространства

Координаты цвета L (Lightness) — яркость цвета измеряется от 0 до 100%, a — диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,

b — диапазон цвета от синего -120 до желтого +120

В 1931 г.

Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.

Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).

Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.

Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.

Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая — субтрактивного.

В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства — независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации.  С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.

Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.

Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи.

Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения.

Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.

Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин — общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб.

Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра.

Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены.

Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин).

При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) — редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка.

Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей.

По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены.

При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут. 

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми. Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть». 

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.

Источник: https://eyesfor.me/home/anatomy-of-the-eye/retina/color-vision.html

Интересные факты о цветном зрении человека. Доставка контактных линз и очков по Москве и России

Исследование цветового зрения: Количество цветных оттеьков, воспринимающихся глазом, очень велико.

Человек обладает самой совершенной зрительной системой среди всех млекопитающих. Он способен различить более 10 млн цветов и их оттенков. Это возможно благодаря наличию фоторецепторов. За восприятие цветов отвечают специальные колбочки, расположенные на сетчатке. Они реагируют на световые волны трех спектров (красный, синий, зеленый).  

Особенности цветового зрения человека

Одной из удивительных особенностей человека является способность различать цвета. Существует мнение, что она появилась у наших далеких предков, чтобы облегчить поиск спелых плодов и растений.

С точки зрения физиологии люди являются трихроматами, поскольку для полного восприятия цвета используют три части спектра (красный, зеленый и синий). Пациенты с частичным нарушением цветовосприятия называют дихроматами. Чаще всего они не способны различать красный или зеленый спектр.

Дихроматическое зрение также присуще большинству животных. Рассмотрим подробнее особенности цветового зрения человека.

В сетчатке человеческого глаза содержатся специальные клетки — колбочки, которые чувствительны к длине световых волн от 370 до 710 нанометров. Это диапазон видимого излучения.

Ниже данных показателей находится радиоспектр и инфракрасное излучение, а выше — ультрафиолетовое, рентгеновское и гамма-излучение.

Наш глаз не воспринимает такие световые волны, поскольку они находятся за границами воспринимаемого спектра.

Интересно, что с точки зрения физики цвета не существует. Синие, зеленые и красные объекты отражают свет с различной длиной волны, а колбочки улавливают их и преобразует фотоны в нервные импульсы за счет выделения особых пигментов.

Далее они интерпретируются мозгом, что позволяет воспринимать цветное изображение. Глаза человека с имеют около 6-7 млн колбочек. Если количество данных клеток меньше нормы или в их структуре имеются патологии, наблюдаются различные нарушения цветовосприятия.

Таким образом, можно утверждать, что цветовое зрение человека — это способность различать волновые спектры света.

Кроме колбочек, на поверхности сетчатки расположены палочки, которые чувствительны к низкому уровню освещения. Благодаря наличию этих клеток человек может различать объекты в сумерках и темноте. Палочки обеспечивают черно-белое видение, а также отвечают за восприятие волны сине-зеленой части спектра.

Особенности цветового зрения:

  • Человек является трихроматом. Для полного различения цвета он использует три части спектра;
  • За преобразование фотонов (частиц света) в нервные импульсы отвечают колбочки, расположенные на сетчатке.
  • Колбочки чувствительны к красному, зеленому и синему спектру световых волн;
  • Глаза человека с нормальным цветовосприятием имеют около 6-7 млн колбочек;
  • Палочки, расположенные на сетчатке, отвечают за черно-белое видение (ночное зрение);
  • Человеческий глаз воспринимает световые волны длиной от 370 до 710 нанометров (видимый спектр).

Интересные факты о цветном зрении

Интересно, что цветное зрение начинает формироваться не сразу после рождения, а только на шестом месяце жизни. Научно доказано, что все дети появляются на свет с цветовой слепотой. Это не является патологией, если цветовосприятие нормализуется через полгода. При этом, по статистике, у каждой 255 девочки и у каждого 12-го мальчика наблюдается дальтонизм (невозможность различать цвета).

С точки зрения физики, всего три цвета являются основными: красный, зеленый и синий, а остальные являются результатом их сочетания в той или иной последовательности. Считается, что глаз человека воспринимает всего семь основных цветов: синий, красный, оранжевый, зеленый, желтый, фиолетовый и голубой. При этом мы видим до 10 млн различных оттенков, среди которых только 500 вариаций серого.

Ученые доказали, что наша сетчатка не способна различать красный цвет, несмотря на наличие колбочек, отвечающих за восприятие этого спектра. Данные рецепторы улавливают только желто-зеленую и сине-зеленую гаммы. Затем головной мозг объединяет эти сигналы и превращает их в красный цвет.

Зрение у женщин и мужчин значительно отличается.

Доказано, что прекрасная половина человечества способна распознавать намного больше различных оттенков, в то время как представители сильного пола могут более длительное время концентрироваться на конкретном объекте и лучше распознавать движущиеся предметы. Существует редкая генетическая мутация, при которой на сетчатке у женщин присутствует дополнительная колбочка. Благодаря этому они воспринимают до 100 млн цветов.

Кроме человека, хорошим цветовым зрением обладают рептилии и птицы.

При проведении исследований в их сетчатке было обнаружено не три, а целых четыре типа колбочек, поэтому большая часть этих животных являются тетрахроматами, способными различать миллионы оттенков.

В отличие от нас, птицы воспринимают ультрафиолетовый цвет. При этом зрение собак и кошек ограничено всего двумя цветовыми спектрами: синим и красным. Морские обитатели смотрят на мир преимущественно в красных оттенках.

С детства мы привыкли думать, что солнце желтое. Однако в процессе исследований было доказано, что оно является космическим объектом черного цвета.

Все дело в том, что человек различает не только волновой спектр, но и температуру света: чем светлее объект, тем более теплым является его спектр излучения.

Мы видим солнце желтым, поскольку эта звезда поглощает окружающие лучи света и при этом не отражает их от своей поверхности.

Ученые доказали, что с возрастом мир человека частично тускнеет и окрашивается в желтые тона, что связано с изменением оптических свойств глаза, из-за которых колбочки начинают хуже воспринимать синий цвет. Это явление легко можно заметить, если изучить картины художников, которые были написаны в молодости и более зрелом возрасте.

Интересные факты о зрении цветовом человека:

  • Дети появляются на свет с цветовой слепотой. Цветовосприятие нормализуется только спустя полгода;
  • У каждой 255 девочки и у каждого 12-го мальчика наблюдается дальтонизм;
  • Цветовое зрение у женщин и мужчин значительно отличается (женщины воспринимают больше оттенков);
  • Сетчатка человеческого глаза не способна различать красный цвет;
  • С физической точки зрения, всего 3 оттенка являются основными: красный, зеленый, синий;
  • Кроме человека, хорошим цветовым зрением обладают рептилии и птицы;
  • Солнце — космический объект черного цвета. Мы видим его желтым из-за того, что звезда поглощает окружающие лучи света;
  • С возрастом мир человека частично тускнеет и окрашивается в желтый цвет из-за изменения оптических свойств глаза.

Иллюзии цветового зрения

Существует ряд ситуаций, при которых человек сталкивается с ошибками зрения (иллюзиями), в процессе рассматривания цветных объектов. Например, в сумерках появляется так называемый эффект Пуркинье.

Это явление заключается в том, что при низком уровне освещения глаз человека снижает чувствительность к восприятию красного и оранжевого (длинноволнового) участка видимого спектра, но при этом улучшает восприятие его коротковолновой части (синий, фиолетовый).

Таким образом, при дневном освещении красный мак и синий василек кажутся нам достаточно близкими друг к другу по яркости. В сумерках мак приобретает совершенно темный окрас, а василек кажется более светлым.

Существуют и другие иллюзии цветового зрения. Иногда о насыщенности цвета объекта человек судит по яркости близлежащих предметов или фона, на котором он находится. В данном случае действует определенная закономерность контраста: цвет воспринимается более светлым, чем в реальности, если объект расположен на темном фоне, и наоборот — более темным на светлом фоне.

Наши органы зрения наиболее приспособлены к восприятию белого солнечного света. С этим связана еще одна интересная оптическая иллюзия.

Если длительное время (в течение 5-10 секунд) неподвижно смотреть на пятно красного цвета, а затем перевести взгляд на бумагу белого цвета, человек увидит на ней зеленое пятно.

В свою очередь, при длительном рассматривании желтого кружка на бумаге появится синее пятно, и наоборот.

Интересно, что человек воспринимает некоторые цвета как «выступающие», а другие — как «отступающие». Рассматривая фигуру, состоящую из большого желтого и малого красного квадратов, мы представляем пирамиду, которая обращена к нам вершиной. Смотря на фигуру, состоящую из малого синего и большого зеленого квадрата, мы видим туннель с выходным отверстием вдали.

Существуют и другие иллюзии цветового зрения. В настоящее время исследования в этой области активно продолжаются.

Исследование цветового зрения: особенности проведения

В настоящее время исследование цветового зрения осуществляется врачом-офтальмологом с помощью специальных приборов или таблиц. В России наиболее популярны таблицы Рабкина. Они позволяют достаточно быстро (всего за пару минут) определить различные формы и степени нарушения цветовосприятия.

Принцип тестирования заключается в том, что человек должен увидеть определенные фигуры или цифры, контрастирующие с общим фоновым изображением.

Данное исследование часто проводится для получения допуска к различным видам деятельности, например, к службе в армии, вождению автотранспорта, управлению краном и пр.

Особенности проверки цветовосприятия с помощью таблиц Рабкина:

  • Тест проводится при нормальном самочувствии пациента;
  • Человеку нужно расслабиться и расположить картинку на одном уровне с глазами;
  • На просмотр одной картинки отводится не более 10 секунд, после чего нужно дать ответ.

При исследовании цветового зрения могут быть выявлены такие аномалии, как цветослабость, дихромазия или полная цветовая слепота. Первая патология встречается наиболее часто. Она связана с затруднением восприятия определенных оттенков.

Человек может либо полностью их не различать, либо тратить на это больше времени. Пациенты с дихромазией не могут воспринимать какой-либо один из трех основных цветов. В случае с цветовой слепотой человек видит мир только в черно-белых тонах.

Выявить все формы нарушения цветовосприятия сегодня можно в любой частной или государственной офтальмологической клинике.

Если Вы пользуетесь контактными линзами, рекомендуем ознакомиться с широким ассортиментом продукции на сайте Очков.Нет. У нас Вы сможете заказать средства контактной коррекции от мировых производителей всего в несколько кликов. Мы гарантируем высокое качество товаров и оперативную доставку по всей территории России.

Источник: https://www.ochkov.net/informaciya/stati/interesnye-fakty-o-cvetnom-zrenii-cheloveka.htm

Medic-studio
Добавить комментарий