IV. Механизмы иммунитета.: К специфическим факторам защиты относятся гуморальное и клеточное

Лекция 2 факторы резистентности и иммунологические механизмы защиты слизистой оболочки – научное обозрение. реферативный журнал (научный журнал)

IV. Механизмы иммунитета.: К специфическим факторам защиты относятся гуморальное и клеточное
1 Чеснокова Н.П. 1 Понукалина Е.В. 1 Полутова Н.В. 1 Бизенкова М.Н. 1 1 ГБОУ ВПО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России» 1. Зайчик А.Ш. Патологическая физиология. Том 2. Патохимия [Текст]: учеб. / А.Ш. Зайчик, Л.П. Чурилов. – 3-е изд. – СПб.:ЭЛБИ-СПб, 2007. – 688 с.
2. Инфекционный процесс / Под ред. Н.П.

Чесноковой, А.В. Михайлова. – М.: «Академия естествознания», 2006. – 434 с.
3. Лекция 4. Особенности структуры, функции и метаболизма В- и Т- систем лимфоцитов / Н.П. Чеснокова, Е.В. Понукалина, Т.Н. Жевак [и др.] // Международный журнал фундаментальных и прикладных исследований. 2015. № 4. – С. 293 -297.
4. Ортопедическая стоматология [Текст]: учеб. / под общ.

ред. В.Н. Трезубова. – 8-е изд., перераб. и доп. – СПб.: Фолиант, 2014. – 592 с.
5. Патологическая физиология [Текст]: учеб. / под общ. ред. В.В.Моррисона, Н.П. Чесноковой. – 4-е изд. – Саратов: Изд-во Сарат. гос. мед. ун-та, 2009. – 679 с.
6. Терапевтическая стоматология [Текст]: учеб. / под общ. ред. Е.В. Боровского. – М.

: ООО «Медицинское информационное агентство», 2011. – 840 с.
7. Типовые реакции иммунной системы на действие антигенов-аллергенов [Текст]: учеб. пособие / под ред. Н.П. Чесноковой. – Саратов: Изд-во Сарат. гос. мед. ун-та, 20014. – 156 с.
8. Физиология человека // Под ред. акад. РАМН Б.И. Ткаченко. – М.: ГЭОТАР–Медиа,2009.- 496 с.
9.

Нормальная физиология // Под ред. В.М. Смирнова. – 3–е издание.,перераб. и доп. – М.: издательский центр «Академия», 2010. – 480 с.
10 Цитокины: биологическая роль в развитии реакций адаптации и повреждения в условиях нормы и патологии различного генеза [Текст]: монография / под общ. ред. В.М. Попкова, Н.П. Чесноковой. – Саратов: Изд-во Сарат. гос. мед.

ун-та, 2016. – 448 с. 1 1 1 1

Местный иммунитет слизистой оболочки рта

Резистентность слизистой оболочки рта обеспечивается комплексом клеточных и гуморальных механизмов защиты. Как известно, в полости рта обитает около 200 представителей различных микроорганизмов, среди которых есть и патогенные. В микробных биоптатах преобладает грамположительная микрофлора.

При электронно-микроскопическом изучении микробной бляшки выявлены следующие изменения ее состава в различные сроки формирования: в однодневных микробных бляшках преобладают кокки, в трехдневных – кокки и палочки, в пятидневных наряду с кокками и палочками появляются подвижные формы – спирохеты, образуются микробные комплексы.

Максимальная концентрация микроорганизмов в 1 мл слюны здорового человека соответствует 107 для факультативных видов и 108 для анаэробов. Различают постоянную – резидентную флору ротовой области и случайную – транзиторную. В состав постоянной флоры входят бактерии, грибы, спирохеты, простейшие и вирусы, преобладают стрептококки альфа- и гамма-типов, вейлонеллы и актиномицеты.

Непостоянная флора включает в себя микроорганизмы, обитающие в дистальном отделе тонкого и толстого кишечника, в частности бактерии группы кишечной палочки, энтерококки, бактерии протея, клостридии и др. Обильному размножению микрофлоры способствуют оптимальная температура полости рта, обилие влаги, органических веществ, близкая к нейтральной реакция среды.

Однако бесконечного размножения микроорганизмов не происходит в связи с наличием в ротовой полости разнообразных механизмов неспецифической резистентности и специфической иммунологической защиты [1, 2, 3, 8, 10].

Говоря о неспецифических механизмах резистентности, необходимо отметить роль слизи, которая препятствует прикреплению бактерий к эпителиальным клеткам, способствует удалению возбудителей из ротовой полости с помощью движения ресничек эпителия в процессе кашля, чихания [1, 2, 3, 5, 7, 8, 10].

Количество микроорганизмов ротовой полости зависит и от интенсивности слущивания эпителия слизистой С адсорбированными на нем микробными клетками, смывания и проглатывания микробов со слюной, поэтому ограничение слюноотделения, нарушения жевания и глотания способствуют увеличению микрофлоры ротовой полости.

Важная роль в регуляции микрофлоры рта отводится микробному антагонизму: зеленящие и негемолитические стрептококки, превалирующие в полости рта, являются основными антагонистами случайной микрофлоры [1, 2, 3, 8, 10].

Мощными факторами селекции микроорганизмов являются pH среды, температура ротовой полости, наличие питательных веществ.

Однако важнейшими факторами защиты ротовой полости от бактериальной микрофлоры являются такие бактерицидные компоненты слюны, как лизоцим, лактоферрин, миелопероксидаза, опсонины, лейкины, иммуноглобулины. К клеточным факторам защиты полости рта относятся нейтрофилы и лимфоциты, а также моноциты.

Установлено, что в полость рта эмигрирует ежеминутно до 250 000 лейкоцитов в основном через зубодесневую борозду. При этом до 97 %: клеток приходится на нейтрофилы, 1–2 % – на лимфоциты, 2–3 % – на моноциты. Такое же соотношение лейкоцитов имеет место в десневой жидкости пародонтальных карманов.

Основной, но далеко не единственной функцией нейтрофилов и макрофагов является фагоцитоз. В первичных азурофильных гранулах нейтрофилов содержатся лизосомальные гидролитические ферменты, миелопероксидаза, лизоцим, катионные белки.

Вторичные гранулы зрелых нейтрофилов включают лактоферрин, лизоцим, фосфатазу, третичные гранулы содержат кислые гидролазы.

Помимо указанных соединений на фоне антигенной стимуляции нейтрофилы могут освобождать в окружающую среду вновь синтезированные биологически активные соединения – эндопирогены, индуцирующие развитие лихорадки, а также свободные радикалы с выраженной бактерицидной активностью. Нейтрофилы обеспечивают в основном защиту от пиогенных бактерий [1, 2, 3, 5, 7, 8, 10].

Макрофаги ротовой полости также обеспечивают антибактериальную ‘защиту в основном за счет фагоцитоза, а также, подобно макрофагам других органов и тканей, обладают способностью продуцировать группу биологически активных соединений, известных под названием монокины.

Группа монокинов включает в себя провоспалительные цитокины интерлейкин-1, интерлейкин-6, интерлейкин-8, колониестимулирующие факторы, С1 С2, С3, С4, С5 – компоненты комплемента, интерферон, а также лизоцим, активатор плазминогена, а2-макроглобулин, фактор лизиса опухолевых клеток, пропердин, фактор активации фибробластов, простагландины Е2, тромбоксан – А2, лейкотриены. На поверхности макрофагов и нейтрофилов имеются рецепторы к Fc-фрагменту иммуноглобулинов и к С3, с помощью которых осуществляется прикрепление опсонизированных микробов к поверхности фагоцита. В развитии реакций фагоцитоза в полости рта, так же как и в других органах и тканях, различают следующие стадии: направленный хемотаксис фагоцита к фагоцитируемому объекту, затем – прикрепление и окружение объекта фагоцитом, опсонизация и распознавание, внутриклеточное поглощение, киллинг микробов, заканчивающийся деструкцией или полным перевариванием объекта. В соответствии с этим фагоцитоз может носить завершенный или незавершенный характер [1, 2, 3, 4, 6, 9, 10].

Лизоцим

Характеризуя факторы неспецифической резистентности ротовой полости, следует отметить важную роль лизоцима, обладающего бактериолитическим и бактериостатическим действием, особенно на грамположительные бактерии.

Лизоцим катализирует гидролиз гликозаминогликанов, растворяет клеточную оболочку и вызывает распад всей бактериальной клетки.

Лизоцим оказывает менее выраженное действие на грамотрицательные микроорганизмы, поскольку пептидогликаны их клеточной оболочки находятся под слоем липопротеинов и липополисахаридов и недоступны гидролизующему воздействию лизоцима.

Лизоцим оказывает также стимулирующее воздействие на В- и Т-системы лимфоцитов, активирует систему комплемента, обладает способностью связывать и инактивировать гистамин, серотонин, стимулирует различные стадии фагоцитоза, регенераторные процессы в тканях.

При снижении способности лейкоцитов человека синтезировать лизоцим резко подавляются многие неспецифические механизмы резистентности слизистой ротовой полости к патогенному воздействию различных возбудителей. Препараты лизоцима широко применяют в клинике в ингаляциях, внутримышечно для лечения инфекционных заболеваний дыхательной системы, тканей пародонта с затяжным течением [1, 2, 3, 4, 6, 9, 10].

Пропердин – высокомолекулярный белок, обнаруживаемый во всех трех фракциях сыворотки крови, обеспечивает бактерицидное, гемолитическое, вируснейтрализующее действие в сочетании с ионами магния, третьим компонентом комплемента за счет образования комплекса с полисахаридными структурами инфекционного возбудителя [1, 2, 3, 8, 10].

Лейкины – термостабильные бактерицидные факторы, образуемые при распаде лейкоцитов, способные инактивировать стафилококки и другие грамположительные микробы. Аналогичным свойством обладают плакины, освобождаемые при распаде тромбоцитов [4, 6, 8, 9, 10].

Бета-лизины – термостабильные гуморальные факторы резистентности против анаэробов и некоторых аэробов.

Интерфероны – термостабильные низкомолекулярные белки, продуцируемые лимфоцитами и моноцитами с выраженной противовирусной активностью.

Интерферон участвует в распознавании антигена, усиливает функции нейтрофильных лейкоцитов, повышает фагоцитарную активность макрофагов, активность лизоцима, модулирует функции В- и Т-лимфоцитов.

Таким образом, интерфероны являются факторами неспецифической противовирусной защиты слизистой оболочки рта, интенсивно образуясь под влиянием одной разновидности вирусов макрофагами и лимфоцитами, они подавляют репродукцию различных вирусов [ 2, 3].

Комплемент – система термолабильных ферментных белков сыворотки крови, включающая 9 компонентов, 20 белков, обеспечивает развитие неспецифической резистентности и специфических иммунологических механизмов защиты.

Различают классический и альтернативный пути активации комплемента под влиянием соответственно специфических иммуноглобулинов, иммунных комплексов или антигенных воздействий.

В ряде случаев активация комплемента возникает вторично вслед за первичной активацией калликреин-кининовой системы, системы фибринолиза, свертывающей системы, а также под влиянием лизосомальных ферментов нейтрофилов, С-реактивного белка [1, 2, 3, 8, 10].

Активация системы комплемента сопровождается возникновением ряда биологических эффектов: обеспечивает активацию и хемотаксис фагоцитов, опсонизацию фагоцитируемого объекта, развитие лизиса клеток, на которых фиксируются иммунные комплексы вместе с комплементом, в связи с формированием ионопроницаемых трансмембранных каналов. Дефицит компонентов системы комплемента делает слизистую оболочку ротовой области чувствительной к патоген-ному воздействию микрофлоры, в то же время формируется аутоиммунно- и онкогенноопасная ситуация.

Компоненты комплемента, так же как иммуноглобулины, могут попадать в слюну из кровотока предположительно через зубодесневую борозду. Значительная часть этих факторов специфической иммунной защиты ротовой полости скапливается в зубодесневой жидкости – в борозде и пародонтальных карманах.

Иммуноглобулины – гуморальные факторы специфической противобактериальной и противовирусной защиты полости рта.

Важнейшими факторами иммунной защиты ротовой полости являются иммуноглобулины A, G, М, которые в слюну, проникают путем пассивной диффузии либо через зубодесневую борозду, либо между эпителиальными клетками десны, в значительном количестве находятся в соединительной ткани десны, богатой микрососудами, возможна внутриклеточная локализация иммуноглобулинов. В сыворотке крови и жидкости десневых карманов соотношение концентрации иммуноглобулинов G и А одинаково и составляет 8:1. Секреторному иммуноглобулину А придается основное значение в иммунологической защите слизистой рта. Секреторный IgA фиксируется на эпителиальной клетке слизистой рта, становясь ее рецептором и придавая ей иммунологическую специфичность. Секреторный IgA устойчив к воздействию ферментов, поэтому присутствует в слюне в наибольших количествах [1, 2, 3, 8, 10].

В образовании молекулы секреторного IgA принимают участие два типа клеток: плазматические и эпителиальные. Мономеры секреторного IgA и J-цепь синтезируются плазматическими клетками подслизистого слоя, при этом образуется (IgA)2J, секретируемый в межклеточное пространство.

Секреторные иммуноглобулины обладают способностью агглютинировать микроорганизмы, препятствовать их размножению, фиксации к эпителию слизистой.

Важная роль в антибактериальной защите слизистой рта отводится антителам, принадлежащим к иммуноглобулинам классов G и М.

Отсутствие указанных иммуноглобулинов при иммунодефицитных состояниях приводит к развитию рецидивирующей инфекции слизистой рта [1, 2, 3, 5, 7, 8, 10].

Иммунитет слизистой ротовой полости нельзя рассматривать лишь как секреторный иммунитет, он обеспечивается взаимосвязанной функцией Т-, В-лимфоцитов и макрофагов. В нормальной ткани десны число макрофагов составляет около 2 % клеток, но в десневой жидкости их число достигает 18 %, это долгоживущие в тканях клетки.

Т- и В-лимфоциты содержатся и в десневой жидкости, причем В-клеток в 2– 3 раза больше, чем Т-лимфоцитов. Источником лимфоцитов ротовой жидкости является десневая жидкость, куда они мигрируют из крови, а также лимфоидное глоточное кольцо и соединительная ткань слизистой оболочки рта, в том числе десны и глотки.

Под влиянием антигенных стимулов лимфоидные клетки, располагающиеся в подслизистом слое десны, собираются в дискретную лимфоидную ткань [1, 2, 3, 4, 6, 9, 10].

Таким образом, наличие последовательного взаимодействия гуморальных факторов неспецифической резистентности, моноцитарно-макрофагальной системы, В системы лимфоцитов, обеспечивающей выработку антигенспецифических антител и нормального микробиоцитоза обеспечивают противоинфекционную защиту полости рта.

Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Полутова Н.В., Бизенкова М.Н. ЛЕКЦИЯ 2 ФАКТОРЫ РЕЗИСТЕНТНОСТИ И ИММУНОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЗАЩИТЫ СЛИЗИСТОЙ ОБОЛОЧКИ // Научное обозрение. Реферативный журнал. – 2018. – № 1. – С. 60-62;
URL: http://abstract.science-review.ru/ru/article/view?id=1860 (дата обращения: 13.02.2020).

Источник: http://abstract.science-review.ru/ru/article/view?id=1860

Механизмы иммунитета. Клеточный и гуморальный иммунитет. Таблетки для иммунитета

IV. Механизмы иммунитета.: К специфическим факторам защиты относятся гуморальное и клеточное

Механизмы иммунитета – это процессы формирования защитной реакции против внедрения в организм чужеродных агентов. От правильности их протекания зависит здоровье и жизнеспособность организма. Бывают специфические и неспецифические механизмы иммунитета.

Специфические – это те, которые работают против конкретного антигена, обеспечивая защиту от него длительное время, иногда на протяжении всей жизни.

Неспецифические механизмы иммунитета можно назвать в некотором роде универсальными, поскольку они реагируют на проникновение в организм любых чужеродных агентов, а также обеспечивают первоначальную эффективную защиту до тех пор, пока не включатся антиген-специфические реакции.

 

Клеточный и гуморальный иммунитет

Исторически, в процессе изучения иммунной системы, сложилось разделение на клеточный и гуморальный иммунитет. Клеточный иммунитет обеспечивается лимфоцитами и фагоцитами и протекает без участия антител, которые относятся к гуморальным механизмам. Этот тип иммунитета осуществляет защиту от инфекций и опухолей.

Основа клеточного иммунитета – это лимфоциты, которые образуются в костном мозге, а затем перемещаются для окончательного созревания в тимус, или вилочковую железу. По этой причине их называют тимус-зависимыми, или Т-лимфоцитами. В течение своей жизни лимфоцитам много раз приходится покидать лимфоидные органы и поступать в кровь, а затем возвращаться обратно.

Благодаря такой мобильности эти клетки могут появляться в местах воспаления достаточно быстро. Т-лимфоциты бывают трех видов, каждый из которых выполняет свою важную функцию. Т-киллеры – это клетки, которые могут уничтожать антигены.

Т-хэлперы первыми узнают о том, что в организм вторгся враг и реагируют на это выработкой особых ферментов, которые вызывают размножение и созревание Т-киллеров и В-клеток. И, наконец, Т-супрессоры нужны для того, чтобы подавлять активность иммунного ответа, когда в нем исчезает необходимость. Это очень важно для того, чтобы остановить развитие аутоиммунных реакций.

Вообще, оказывается, что поставить четкую границу, разделяющую клеточный и гуморальный иммунитет, нельзя. В образовании антигенов участвуют клетки, а некоторые реакции клеточного иммунитета невозможны без антител. Гуморальный иммунитет строится на образовании антител к каждому антигену, попадающему в организм человека.

Он представлен различными белками, присутствующими в крови и других биологических жидкостях. К ним относятся интерфероны, способные делать клетки невосприимчивыми к воздействию вирусов; С-реактивный белок крови, который запускает систему комплемента; лизоцим – это фермент, который повреждает стенки чужеродных микроорганизмов, растворяя их.

Названные белки относятся к неспецифическому гуморальному иммунитету. Но есть также специфический, который представлен интерлейкинами, а также специфическими антителами и другими образованиями.

Как видим, клеточный и гуморальный иммунитет тесно связаны между собой, и сбой в одном звене неизбежно потянет за собой проблемы в работе другого.

 

Противовирусный и инфекционный иммунитет

Инфекционный иммунитет может еще по-другому называться нестерильным. Его суть состоит в том, что человек не может повторно заразиться болезнью, возбудитель которой уже есть в организме. Он может быть врожденным либо приобретенным, а приобретенный, в свою очередь, активным или пассивным.

Инфекционный иммунитет существует лишь до тех пор, пока в крови находится антиген и антитела к нему, то есть в течение болезни. Когда этот период заканчивается, данная защита перестает действовать и человек снова может заразиться тем, чем недавно переболел. Инфекционный иммунитет может быть кратковременным, длительным или пожизненным.

Так, например, кратковременный обеспечивается во время болезни гриппом, длительный может быть при брюшном тифе, а пожизненный приобретается после кори, краснухи, ветрянки и прочих болезней. 

Противовирусный иммунитет на первом этапе обеспечивается механическими барьерами – кожными покровами, слизистыми оболочками.

Повреждение их, или сухость слизистых облегчают проникновение вируса в организм. После того, как враг попал, куда стремился и начал повреждать клетки, огромное значение играет выработка интерферонов, которые обеспечивают их невосприимчивость к действию вируса. Далее противовирусный иммунитет действует благодаря зову гибнущих клеток.

Погибая, они выделяют цитокины, которые являются признаком воспаления. На этот зов сбегаются лейкоциты, которые и формируют очаг воспаления. Примерно на 4-й день болезни начинают вырабатываться антитела, которые, в конце-концов и победят вирус.

Им на помощь приходят также макрофаги – клетки, обеспечивающие фагоцитоз, уничтожение и переваривание вражеских клеток. Противовирусный иммунитет – это очень сложный процесс, в котором участвует множество ресурсов иммунной системы.

К сожалению, иммунные реакции не всегда срабатывают так, как об этом пишут в учебниках по биологии. Часто какой-либо процесс может быть нарушен, что приводит к осложнениям и проблемам. Когда снижен иммунный ответ, нужны средства, поднимающие иммунитет.

Они могут быть природными, либо купленными в аптеке, главное – это эффективность и безопасность. В активизации иммунной защиты нуждаются люди разных возрастов, включая стариков и детей, а эти категории населения особенно нуждаются в мягком и безопасном подходе к лечению.

Многие современные средства, поднимающие иммунитет, не отвечают этому требованию. Они вызывают побочные эффекты, привыкание, синдром отмены, что, в конце концов, ставит под вопрос целесообразность их приема.

Конечно же, медицинское обследование и назначение лечащего врача – это основание для того, чтобы принимать средства, поднимающие иммунитет. Самолечение недопустимо.

Ученые давно пытались создать «волшебные» таблетки для иммунитета, которые бы могли восстанавливать его функции. Более полувека тому назад было проведено исследование, которое позволяет сегодня говорить о том, что такие таблетки изобретены.

Это учение о трансфер факторах – информационных соединениях, которые способны обучать клетки иммунной системы, разъяснять им, как именно, когда, и против кого нужно действовать.

Результатом многолетней работы стали таблетки для иммунитета, которые регулируют и восстанавливают его функции, что раньше казалось недосягаемым.

Речь идет о Трансфер факторе – препарате, который восполняет недостаток иммунной информации, благодаря входящим в его состав информационным соединениям, взятым из коровьего молозива. Натуральность, безопасность и небывалая эффективность – ни одни таблетки для иммунитета, кроме Трансфер фактора, на такое не способны.

Данный препарат – лучшее, что есть на сегодняшний день для восстановления иммунной системы. Он хорош и для профилактики, и для лечения, и в период восстановления. Даже младенцы, беременные женщины и пожилые люди могут его принимать, не опасаясь побочных эффектов или привыкания, а это серьезный показатель безопасности.

Источник: https://transferfaktory.ru/mehanizmyi-immuniteta

Специфические защитные механизмы

IV. Механизмы иммунитета.: К специфическим факторам защиты относятся гуморальное и клеточное

Классификация защитных механизмов

Понятие об иммунитете

ИММУНИТЕТ И ЗДОРОВЬЕ

Иммунитет(от латинского immunitas – освобождение от чего-либо) – это защита организма от веществ и существ, несущих признаки генетически чужеродной информации.

К ним относятся микроорганизмы, вирусы, грибки, простейшие, различные белки, клетки, в том числе и свои собственные – стареющие и модифицированные, злокачественные и пересаженные.

Иммунитет связан с оплодотворением, участвует в эмбриональном развитии, защищает человека после родов, осуществляет механизм развития, принимает участие в обмене веществ и т.д.

Иммунитет – это система организма, направленная на поддержание генетической целостности клеточного состава живых существ.

Механизмы иммунитета удивительно точны: они способны выделить чужеродную клетку, содержащую всего один нуклеотид, отличающийся от генома собственного организма.

Иммунитет передается по наследству, это генотипическое явление.

В связи с этим он имеет видовую специфичность, и у разных животных и у человека иммунитет различается, но в популяциях одного вида по выраженности и характеру проявления он довольно однотипный и отличается только степенью индивидуального проявления.

Общим свойством любого наследственного иммунитета является то, что по напряженности он превосходит приобретенный иммунитет и незначительно меняется в процессе жизни – в этом смысле слова его можно считать абсолютно устойчивым.

Основоположниками иммунологии являются Л. Пастер, И. Мечников, П. Эрлих. В 1881 г. Л. Пастер разработал принципы создания вакцин из ослабленных микроорганизмов с целью предупреждения развития инфекционных заболеваний. И. Мечников создал фагоцитарную теорию иммунитета. В 1908 г. И. Мечников и П. Эрлих независимо друг от друга были удостоены Нобелевской премии за работы по теории иммунитета.

В организме существует три взаимодополняющие системы, обеспечивающие защиту от вредных агентов.

Специфическая иммунная система отвечает на внедрение чужеродных клеток, частиц или молекул (антигенов – АГ) образованием специфических защитных веществ, локализованных внутри клеток или на поверхности (специфический клеточный иммунитет), либо растворенных в плазме (антитела – AT; специфический гуморальный иммунитет). Эти вещества, соединяющиеся с чужеродными частицами (реакция АГ-АТ), нейтрализуют их влияние.

Неспецифические гуморальные системы. К ним относятся система комплемента и другие белки плазмы, способные разрушать комплексы АГ–АТ, уничтожать инородные частицы и активировать клетки организма, участвующие в воспалительных реакциях.

Неспецифические клеточные системы включают лейкоциты и макрофаги, способные осуществлять фагоцитоз и благодаря этому уничтожающие болезнетворные агенты и комплексы АГ–АТ. Тканевые макрофаги играют также важную роль в распознавании специфической иммунной системой инородных частиц.

Неспецифические системы иммунитета способны обезвреживать чужеродные агенты даже в том случае, если организм с ними ни разу предварительно не сталкивался.

Что же касается специфических систем,то они формируются (иммунитет приобретается) лишь после начального взаимодействия с чужеродным фактором.

Специфическая иммунная система выполняет в организме две функции:

– идентификация чужеродной биологической информации;

– уничтожение генетически чужеродных элементов, посягающих на постоянство и целостность внутренней среды организма.

Ко второй функции относится защита организма от внешних патогенных факторов и собственных трансформированных клеток, образующихся в каждый конкретный момент времени в количестве 106, которое есть «критическая масса», некоторый предел, начиная с которого эволюция многоклеточных была бы невозможна без эффективного контроля за естественным мутационным потоком. Функцию контроля за мутационным потоком взяла на себя как раз иммунная система.

Так называемые иммунокомпетентные клетки, способные вызывать иммунные реакции, распознают чужеродные тела по структуре их поверхности (антигенным детерминантам) и вырабатывают антитела соответствующей конфигурации, связывающиеся с данными чужеродными элементами.

Иммунная система способна также запоминать структуру антигенов, так что, когда эти антигены повторно внедряются в организм, иммунный ответ возникает быстрее и антител образуется больше, чем при первичном контакте (так называемая иммунологическая память).

При этом защитные функции организма изменяются таким образом, что при повторном инфицировании тем или иным болезнетворным агентом симптомы заболевания чаще всего не возникают.

Именно поэтому некоторые болезни, например, корь, ветряная оспа, эпидемический паротит, скарлатина и целый ряд других встречаются преимущественно у детей («детские инфекции»): при повторном внедрении их возбудителей организм уже имеет к ним иммунитет. То есть в этом случае иммунитет не наследуется, а приобретается.

Главную роль в образовании антител и клеток иммунной системы играет лимфатическая система. Морфологически формирующиеся здесь лимфоциты крови различаются лишь размерами, но по химическим особенностям цитоплазматических мембран и функциям можно выделить несколько типов лимфоцитов, среди которых три основных – В-лимфоциты, Т-лимфоциты и нулевые клетки.

Лимфоциты развиваются из лимфоидных стволовых клеток, которые в свою очередь происходят от кроветворных гемопоэтических стволовых клеток. В эмбриональном периоде лимфоидные стволовые клетки обнаруживаются в печени, а в дальнейшем – в костном мозгу. У человека после рождения кроветворным органом является только костный мозг.

К органам иммунной системы (лимфоидным органам) относятся все органы, которые участвуют в образовании клеток и белковых частиц, осуществляющих защитные реакции организма.

Иммунные органы построены из лимфоидной ткани, которая представляет собой ретикулярную строму и расположенные веепетлях клетки лимфоидного ряда: лимфоциты различной степени зрелости, молодые и зрелые плазматические клетки, а также макрофаги и другие клеточные элементы.

Такими органами являются: костный мозг, вилочковая железа (тимус), скопления лимфоидной ткани, расположенные в стенках полых органов (дыхательной системы – BALT и пищеварительной системы – SALT) и мочеполового аппарата, лимфатические узлы и селезенка.

Костный мозг и тимус, в которых из стволовых клеток дифференцируются лимфоциты, относятся к центральным органам иммунной системы, остальные являются периферическими органами иммуногенеза, куда лимфоциты выселяются из центральных органов. Последние расположены в хорошо защищенных от внешних воздействий местах, а периферические органы расположены на путях возможного внедрения в организм генетически чужеродных веществ или на путях следования таких веществ, образовавшихся в самом организме.

В процессе онтогенеза предшественники лимфоцитов мигрируют из кроветворных (гемопоэтических) органов и переносятся с кровью к первичным лимфоидным органам – костному мозгу и тимусу.

Здесь они размножаются и одновременно приобретают морфологические и функциональные свойства, характерные для различных типов клеток, то есть становятся коммитированными лимфоцитами.

Лимфоциты, претерпевающие эти изменения в костном мозгу, называются В-лимфоцитами (от латинского bursu – фабрициева сумка – лимфоидный орган, расположенный в каудальных отделах кишечника у птиц, но отсутствующий у человека). Лимфоциты, развивающиеся в тимусе под влиянием определенных факторов роста (тимозин, тимопоэтин и др.

) и при непосредственном контакте с эпителиальными тимическими клетками, называют тимусзависимыми, или Т-лимфоцитами. В- и Т-лимфоциты переносятся кровью от первичных (центральных) ко вторичным лимфоидным органам. При первом контакте с антигеном они пролиферируют и дифференцируются, превращаясь в иммунокомпетентные клетки (плазматические клетки, Т-эффекторы).

Система В-клеток составляет около 15% лимфоцитов крови и отвечает за гуморальный иммунный ответ. Больше всего В-лимфоцитов находится в групповых лимфатических фолликулах, костном мозге, крови и селезенке (40–60%), в лимфатических узлах и грудном лимфатическом протоке (25%).

Практически нет В-лимфоцитов только в тимусе. Диаметр зрелых В-лимфоцитов несколько больше, чем Т-лимфоцитов (8,5 мкм), поверхность их покрыта густым слоем отростков, являющихся антигенраспознающими рецепторами.

В клеточных мембранах В-лимфоцитов эти специфические рецепторы, или иммуноглобулины (Jg), заякорены и ориентированы на соответствующие антигены.

При первом контакте с антигеном некоторые В-лимфоциты трансформируются в плазматические клетки и начинают вырабатывать специфические для данного антигена иммуноглобулины, выделяющиеся в кровь и во внеклеточную жидкость (гуморальные антитела).

Активация В-лимфоцитов первым поступлением АГ происходит только в присутствии определенных регуляторных тканевых гормонов, одни из которых секретируются Т-лимфоцитами (в частности, их разновидностью Т-хелперами) и называются лимфокинами, другие – макрофагами и называются монокинами.

Встречаются, однако, и такие АГ (например, бактериальные липополисахариды), которые могут стимулировать антителообразование без Т-хелперов. Правда, иммунный ответ на такие АГ довольно неустойчив и повторное их воздействие на организм не сопровождается, как обычно, усиленной выработкой AT.

Развитие плазматических клеток от плазмобласта до зрелой формы занимает 5–6 суток. Жизненный цикл зрелых плазматических клеток, продуцирующий тот или иной вид AT, не превышает 2–3 суток. Плазматические клетки не циркулируют в крови, но в течение этих 2–3 суток мигрируют в ткани.

Функционально плазматические клетки являются своеобразными одноклеточными белковыми железами, секретирующими AT одной специфичности.

Более того, при наличии в молекуле АГ двух разных детерминант плазматическая клетка вырабатывает AT против одной из них (лишь 0,01% клеток способны продуцировать AT двух видов).

Другие активированные антигеном В-лимфоциты превращаются в В-клетки памяти – это юные, не закончившие полный цикл трансформаций клетки, способные к активному размножению.

Все дочерние клетки одного активированного определенным антигеном В-лимфоцита, в том числе и В-клетки памяти, синтезируют антитела, специфичные именно к данному определенному антигену, так называемые моноклональные антитела.

У клеток иммунологической памяти все направления синтеза антител, за исключением одного, репрессированы, и для них лишь данный антиген служит директивным включателем уже детерминированной пролиферации и дифференцировки, которая заканчивается образованием плазматических клеток за 2–3 дня. Фаза АТ-образования применительно к одной группе (клону) продолжается около 10 суток, но по отношению ко многим из них может увеличиваться до нескольких недель. Сами же В-клетки памяти обладают длительным сроком существования – до нескольких месяцев и даже лет.

Система Т-клеток. Т-лимфоциты ответственны за клеточный иммунный ответ, к ним относят 70–80% всех лимфоцитов крови. Популяция Т-лимфоцитов весьма многочисленна.

Более всего Т-клеток находится в тимусе и грудном лимфатическом протоке, где они составляют соответственно 95–100% и 80–90%, в крови и в лимфатических узлах их 55–85%, в селезенке и лимфоидной ткани слизистых оболочек – 25–40%.

Зрелые Т-лимфоциты по форме напоминают малые лимфоциты крови. Ядро у них подковообразное, плотное и интенсивно окрашенное, цитоплазма в виде узкого ободка, диаметр 6,0–6,5 мкм.

На гладкой поверхности Т-лимфоцитов определяется сравнительно небольшое количество коротких отростков, представляющих собой рецепторы, состоящие из двух сцепленных друг с другом а- и р-полипептидных цепей. В составе каждой цепи имеется по два домена (участка) – константный и вариабельный.

Вариабельные участки Т-лимфоцита связываются не с гаптенами, как иммуноглобулины, а с носителем антигена.

Т-лимфоциты не циркулируют в крови и лимфе постоянно, а периодически появляются во вторичных лимфоидных органах. После активации антигеном эти клетки пролиферируют и превращаются в Т-эффекторы или в долгоживущие Т-клетки памяти.

По свойствам поверхности можно выделить две субпопуляции Т-эффекторов – Т4- и Т8-клетки. Каждая из них в свою очередь подразделяется на группы по функциональным критериям.

К Т-клеткам, представляющим в основном Т4-тип, относятся: 1) Т-лимфокиновые клетки, выделяющие лимфокины (гормоноподобные вещества, активирующие другие клетки организма, например, макрофаги и гемопоэтические стволовые клетки); 2) Т-хелперы-индукторы, секретирующие интерлейкин-2 (лимфолейкин), способствующий дифференциации дополнительных Т-клеток; 3) Т-хелперы, долгоживущие лимфоциты, высвобождающие так называемые факторы роста В-клеток. Лимфоциты, относящиеся преимущественно к Т8-типу, – это Т-киллеры, уничтожающие клетки, несущие антиген, и Т-супрессоры, тормозящие активность В- и Т-лимфоцитов и предупреждающие тем самым чрезмерные иммунные реакции. Т-супрессоры очень чувствительны к ионизирующей радиации и имеют короткий период жизни. Все перечисленные типы клеток относятся к короткоживущей (несколько дней) оседлой субпопуляции и обнаруживаются преимущественно в тимусе и селезенке.

Таким образом, система Т-клеток регулирует функции клеток других типов, ответственных за иммунитет, в частности В-лимфоцитов. Долгоживущие (месяцы и годы) клетки Т-памяти циркулируют в крови и представляют собой не до конца дифференцированные Т-лимфоциты; в определенных случаях они могут распознавать антиген даже спустя годы после первого контакта.

При повторном контакте с этим антигеном они инициируют вторичную реакцию, в ходе которой пролиферируют более интенсивно, чем при первичном ответе, – в результате быстро образуется большое число Т-эффекторов. Долгоживущих Т-лимфоцитов в грудном протоке 90%, в лимфатических узлах – 70%, в селезенке – 25%.

В отличие от В-лимфоцитов Т-лимфоциты не несут обычного набора мембраносвязанных Jg. Вместе с тем их рецептор, воспринимающий антигены, состоит из антиген-специфического гликопротеина (Т4- или Т8-гликопротеин) и трех антиген-неспецифических, то есть одинаковых у всех Т-клеток белков (ТЗ-белки).

Важно отметить, что Т-клетки могут связывать антигены лишь в том случае, если последние ассоциированы с определенными антигенными структурами, расположенными на поверхности всех ядросодержащих клеток организма. Эти антигенные структуры называют главным комплексом гистосовместимости.

Так, когда макрофаг презентирует Т-лимфоцитам чужеродный антиген (патоген), лимфоцит распознает его в комплексе с антигеном гистосовместимости на поверхности макрофага.

Набор антигенов гистосовместимости предопределен генетически, различается у разных индивидуумов и играет важную роль в развитии иммунотолерантности, а также участвует в реакциях отторжения пересаженных органов. В хирургической практике перед операцией по пересадке органа исследуют набор антигенов гистосовместимости донора и реципиента с целью установить их антигенное сходство (для этого обычно используют легкодоступные лейкоциты).

На долю нулевых клеток приходится 10% лимфоцитов крови. К ним относятся те лимфоциты, которые на основании поверхностных свойств нельзя с определенностью отнести ни к В-, ни к Т-системам.

Часть этих клеток представляет собой гемопоэтические клетки – предшественники, попавшие в кровоток из костного мозга. Сюда же относят и К-клетки (клетки-киллеры), которые имеют рецепторы для Fc-компонента Jg (о чем будет сказано ниже) и уничтожают клетки, несущие данные Jg.

Таким образом, иммунная атака со стороны К-киллеров является антиген-зависимой, но не антиген-специфичной, поэтому эти клетки, в строгом смысле слова, нельзя рассматривать как составные части специфической иммунной системы.

К цитоксическим нулевым клеткам относятся также естественные клетки-киллеры (ЕКК). Реакции, в которых участвуют ЕКК, не зависят от АГ и АТ, однако особенно эффективно ЕКК действуют на опухолевые клетки.

Макрофаги как АГ-презентирующие клетки – основной тип клеток моноцитарной системы лимфоцитов. Они представляют собой крупные (10–20 мкм) гетерогенные по функциональной активности долгоживущие клетки с хорошо развитой цитоплазмой и лизосомальным аппаратом.

На их поверхности имеются специфические рецепторы к В- и Т-лимфоцитам, Fc-фрагменту иммуноглобулина, G, С3-фракциям комплемента, цитокинам, гистамину. Различают подвижные и фиксированные макрофаги.

Первые – это моноциты крови, вторые – макрофаги дыхательных путей, купферовские клетки печени, париетальные макрофаги брюшины, селезенки и лимфатических узлов.

Значение макрофагов состоит в том, что они накапливают и подвергают переработке проникающие в организм тимусзависимые АГ и презентируют их в трансформированном виде для распознавания тимоцитам, вслед за чем стимулируется пролиферация и дифференциация В-лимфоцитов в антителообразующие плазматические клетки.

Акт распознавания «чужого» агента, попавшего извне или образовавшегося в организме, выполняют иногда и лимфоциты.

Недавно была открыта группа вспомогательных клеток при распознавании «чужого», объединенных названием «лимбоциты».

Из этой группы клеток для реализации иммунного ответа особое значение имеют дендриты (древовидные клетки), неспособные к фагоцитозу, но, тем не менее, представляющие антиген лимфоцитам.

Таким образом, основными клеточными элементами, обеспечивающими приобретенный иммунитет, являются В-лимфроциты, Т-лимфоциты и макрофаги.

Антигены (от греческого anti – против, genes – род, происхождение) – вещества, которые несут признаки генетической чужеродности для данного организма и являются первопричиной развития иммунного процесса.

Антигены – это потенциально болезнетворные вещества (патогены, белки других видов животных, инертные соединения), которые при попадании в организм вызывают образование специфических, нейтрализующих их антител.

Антигены состоят из неспецифической крупной молекулы – носителя (полисахарида, белка или липида с молекулярной массой более 10 000) и структурных компонентов – детерминант, локализованных на поверхности молекулы и определяющих ее специфичность.

Высокомолекулярные соединения, индуцирующие антитело-образование и взаимодействующие с иммуноглобулинами, называются иммуногенами, а низкомолекулярные, только реагирующие с антителами, – гаптенами. Иммуногены могут быть носителями нескольких детерминант-гаптенов.

Иммуногенность фактора обусловлена его молекулярной массой, поэтому наибольшей способностью индуцировать продукцию AT обладают чужеродные макромолекулярные белки. Иммуногенность белка определяется также содержанием аминокислот (не менее 10), их последовательностью, а также конфигурацией самого белка.

При недостатке аминокислот антигенность белка снижается или полностью утрачивается. Существенную роль в иммуногенности играет и коллоидное состояние вещества, поэтому нативный белок как устойчивый коллоид является наиболее активным иммуногеном.

В естественных белках – антигенах детерминантами являются аминокислотные остатки, в полисахаридных антигенах – молекулы гексозы, в более сложных антигенах – антипирин, антибиотики, азокраски, липиды, низкомолекулярные полисахариды, химические элементы и т.д.

Судьба антигенов в организме зависит от способа введения: при внутривенном антиген быстро поступает в селезенку и печень; при подкожном и внутримышечном – в лимфоузлы и т.д. Антигены могут поступать в организм через кожу, а также через слизистые оболочки пищеварительного и дыхательного трактов.

антигена в кровотоке за счет распада белка за сутки уменьшается вдвое, после чего включается механизм иммунной элиминации антигена до его полного исчезновения из кровотока. В печени и селезенке антиген может сохраняться достаточно долго – месяцы и годы.

При иммунном ответе обычно действуют механизмы как гуморального, так и клеточного иммунитета, но в разной степени. Так, при кори преобладает гуморальный ответ, а при контактной аллергии или реакциях отторжения – клеточный.

Как в гуморальной, так и в клеточной системе вторичные реакции, возникающие при повторном контакте с тем или иным антигеном, протекают быстрее и интенсивнее, чем первичные, и концентрация в крови иммуноглобулина резко возрастает. Поскольку гуморальный иммунный ответ быстрее клеточного, его называют также немедленной иммунологической реакцией.

К нему относят многие реакции гиперчувствительности, например, аллергические ответы на лекарства или пыльцу (сенная лихорадка), аллергические формы бронхиальной астмы и осложнения при переливании несовместимой крови.

Клеточный иммунный ответ по сравнению с гуморальным развивается сравнительно медленно, достигая максимума примерно за 48 часов, поэтому его называют отложенным ответом.

К реакциям этого типа относятся многие виды так называемой контактной аллергии (например, возникающей у людей при воздействии на кожу некоторых синтетических веществ; ношении изделий из кожи, дубленой солями хрома, или ювелирных изделий, содержащих никель).

В этом случае возникают покраснения кожи, волдыри и усиленная секреция жидкости под кожу и слизистые оболочки.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/3_67588_spetsificheskie-zashchitnie-mehanizmi.html

Специфический и неспецифический иммунитет

IV. Механизмы иммунитета.: К специфическим факторам защиты относятся гуморальное и клеточное

Иммунная система отвечает за устойчивость человеческого организма к болезнетворным микроорганизмам. Неправильная работа системы приводит к сбоям и нарушениям функционирования внутренней среды, снижая ее невосприимчивость к чужеродным элементам. Эффективная защита обеспечивается специфическим и неспецифическим иммунитетом.

Специфический иммунитет

Специфический иммунитет (приобретенный) — это способность организма обеспечивать защиту внутренней среды посредством выработки антител, содействующих устранению болезнетворных микроорганизмов. Невосприимчивость иммунной системы образуется в результате взаимодействия с элементами после введения вакцины или перенесенного заболевания. Образование защиты происходит в течение всей жизни человека.

Начинает свое действие при первом контакте с чужеродным микроорганизмом. Основным механизмом, обеспечивающим работу системы выступает лимфоцит (подразделяется на Т — лимфоциты и В — лимфоциты), формируются в костном мозге. Иммунная защита отличается эффективностью.

Отличительной особенностью приобретенной иммунной защиты выступает формирование памяти. После первичного контакта с бактериями и вирусами образуются клеточный элементы, которые при последующем столкновении с антителами превращаются в лимфоциты и формируют защитный барьер.

Виды

Виды специфического иммунитета подразделяются на:

Пассивный (врожденный) — формируется посредством введения искусственных микроэлементов от матери ребенку. Продолжительность действия устойчивости небольшая;

Активный (приобретенный) — приобретается после инфекционного заболевания или вакцинации человека. В результате образуются микроэлементы, исключающие возможность повторного заболевания или обеспечивающие протекание болезни в легкой форме. Осуществляет защитные функции внутренней среды человека в течение длительного периода или всю жизнь;

Приобретенный пассивный — образуется в результате ввода сыворотки, созданной на основе антител другого человека или животного. Является эффективным непродолжительное время.

Также специфический иммунитет делится на клеточный и гуморальный, элементы которых играют активную роль в предотвращении распространения инородных частиц.

Клеточный — осуществляет защитные функции посредством Т — лимфоцитов. Задача микроэлементов распознать и предотвратить распространение, посредством дублирования клеток ткани;

Гуморальный — осуществляет защитные функции посредством В — лимфоцитов, которые после распознания частиц производят антитела, попадающие в кровь. Защитный процесс организма осуществляется во внеклеточном пространстве.

Факторы

Иммунная устойчивость внутренней среды человека обеспечивается путем взаимодействия механизмов и факторов защиты. Специфические факторы иммунитета оказывают противодействие только в отношении одной разновидности инородных микроорганизмов.

К защитным факторам относятся:

  • Способность создавать антитела;
  • Фагоцитоз;
  • Формирование иммунной памяти;
  • Иммунологическая толерантность.

Неспецифический иммунитет

Неспецифический иммунитет — это механизм защиты внутренней среды человека, полученный по наследству. Отличается способностью отдельного вида противостоять некоторым заболеваниям. При этом обращает на себя внимание, что помимо устойчивости организма к инфекционным заболеваниям передается предрасположенность к болезням (инсульт, онкологические заболевания).

В первые годы жизни неспецифическая устойчивость осуществляет защитные функции. В течение жизни развивается специфический иммунитет, способствующий ликвидации инородных элементов после образования собственных антител и клеточных частиц.

Неспецифическая устойчивость к заболеваниям обеспечивается факторами иммунной системы, среди которых выделяют:

  • Кожный покров и слизистые оболочки;
  • Антибактериальные вещества в слюнной и слезной жидкостях и крови;
  • Устранение опасных микроорганизмов при помощи специальных клеточных элементов (макро и микрофагов);
  • Образование веществ, способствующих делению микробов;
  • Комплементная система, состоящая из белковых клеток, принимающих участие в устранении антител.

Чем обеспечивается?

Неспецифический клеточный иммунитет обеспечивает защиту человеческого организма посредством лейкоцитов, которые содержатся в крови индивида, и фагоцитоза. Захват и переваривание вирусных и бактериальных частиц осуществляется моноцитами, тромбоцитами, гранулоцитами, лимфоцитами.

Неспецифическая устойчивость формируется за счет активности Т — лимфоцитов, которые обладают антигенной специфичностью.

Отличие специфического иммунитета от неспецифического

Первостепенным отличие специфического иммунитета от неспецифического является характер их формирования. Неспецифическая иммунная устойчивость формируется во внутриутробном состоянии и является врожденной невосприимчивостью человека. Специфическая защищенность образуется в течение жизни вследствие заболевания или ввода искусственных антител.

Также отличием специфической устойчивости от неспецифической выступает механизмы действия. Врожденная защита запускается в первую очередь при проникновении микроэлемента во внутреннюю среду человека.

Осуществляется посредством уничтожения инородного тела и инициирования воспалительного процесса, который является универсальным защитным механизмом.

Вторым этапом защитной реакции выступает фаза распознания опасной частицы и создание антител, специфичных для конкретного заболевания.

Взаимодействие специфической и неспецифической иммунной системы обеспечивают защищенность внутренней среды индивида.

Источник: https://centr-zdorovja.com/immunitet-specificheskij-i-nespecificheskij/

Medic-studio
Добавить комментарий