Механизм токсического действия: Как указывалось, практически все эффекты, выявляемые на началь­ных

Токсикодинамика. Механизм токсического действия. : Farmf | литература для фармацевтов

Механизм токсического действия: Как указывалось, практически все эффекты, выявляемые на началь­ных

Токсикодинамика — изучение действия веществ на организм, вызываемых ими эффектов. Она определяет, где, как и почему действует ядовитое вещество.

Взаимодействие токсиканта или продуктов его превращения в организме со структурными элементами биосистем, лежащее в основе развивающегося токсического процесса, называется механизмом токсического действия. Взаимодействие осуществляется за счет физико-химических и химических реакции.

Рецептор (мишень) – структурный компонент биологической системы, с которым вступает в химическое взаимодействие токсикант.

Рецепторы – это участки относительно специфического связывания на биосубстрате ксенобиотиков (или эндогенных молекул), при условии, что процесс связывания подчиняется закону действующих масс.

В качестве рецепторов могут выступать:

  • целые молекулы белков или их фрагменты.
  • молекулы нуклеиновых кислот или их фрагменты.
  • молекулы полисахаридов или их фрагменты.
  • молекулы липидов или их фрагменты.

Токсикодинамика. Правила токсичности:

  • токсическое действие вещества выражено тем сильнее, чем большее количество активных рецепторов (структур-мишеней) вступило во взаимодействие с токсикантом;
  • токсичность вещества тем выше, чем меньшее его количество связывается с “немыми” рецепторами, чем эффективнее оно действует на активный рецептор (структуру-мишень), чем большее значение имеет рецептор и повреждаемая биологическая система для поддержания гомеостаза целостного организма.

Действие токсиканта на элементы межклеточного пространства

  1. Электролитные эффекты.
  2. рН-эффекты.
  3. Связывание и инактивация структурных элементов межклеточной жидкости и плазмы крови.
  4. Нарушение осмотического давления.

Токсикодинамика. Взаимодействие токсикантов с белками

Основные функции белков:

  • транспортная
  • структурная
  • энзиматическая.

Токсический эффект может развиваться при нарушении каждой из этих функций. Особое значение имеет ингибиторное действие токсикантов на энзимы.

Пути угнетение активности энзимов (зависят от строения токсиканта):

  • денатурация (изменение конформации) белковой части фермента;
  • блокада активных центров ферментов;
  • конкуренция с коэнзимом (его связывание, истощение запасов);
  • взаимодействие с аллостерическим центром;
  • взаимодействие с субстратом;
  • связывание активаторов ферментативной активности.

К числу веществ, денатурирующих белки, относятся крепкие щелочи, кислоты, окислители, ионы тяжелых металлов.

В основе денатурации лежит нарушение внутрибелковых связей, стабилизирующих вторичную, третичную, четвертичную структуру апофермента. Наиболее часто токсиканты взаимодействуют с СООН-, NН-, ОН-, SН-группами белков.

Многочисленные токсиканты, взаимодействующие с SН-группами, называются тиоловыми ядами (мышьяк, ртуть, люизит).

Целый ряд высокотоксичных соединений, структурно напоминая субстрат, способны взаимодействовать с активными «центрами» энзимов, угнетая их активность. К таким веществам относятся ингибиторы холинэстеразы (ФОС, карбаматы и т. д.), ингибиторы аконитазы (метаболиты фтор-, хлоруксусной кислоты).

Многие токсиканты, взаимодействуя с простетической группой энзимов, блокируют их активность. Таким способом, например, сулфиды и цианиды ингибируют цитохромоксидазу, ряд других энзимов, простетической группой которых являются железосодержащие порфириновые структуры.

Примерами токсикантов, взаимодействующих с субстратами с образованием продуктов, ингибирующих активность энзимов, являются гидразин (взаимодействие с пиридоксалем, образование пиридоксальгидразонов, ингибиторов пиридоксалькиназы), мышьяковистая кислота (взаимодействует с фосфоглицероальдегидом — продукт ингибирует гликолиз).

Известно, что целый ряд ферментов «работает» лишь в присутствии активаторов. К числу последних часто относятся ионы металлов: Мg, Мn,Co, Zn,Cu, Са и т. д. Удаление указанных ионов из среды сопровождается существенным снижением активности ферментов. Представителями веществ, реализующих токсическое действие по этому механизму, являются хелатирующие агенты.

Наиболее токсичные представители — производные гидроксиизохинолина и дитиокарбаматы. Дитиокарбаматы связывают ион Cu, активизирующий важнейший энзим метаболизма спиртов — альдегид дегидрогеназу. Некоторые производные дитиокарбаматов, образующие комплексы с Мn , Со, используются в качестве фунгицидов.

Поскольку подавляющее большинство процессов, протекающих в организме, имеет ферментативную природу, угнетение активности ферментов — наиболее частая причина развития интоксикаций, имеющих самые разнообразные проявления.

Взаимодействие токсикантов с нуклеиновыми кислотами ДНК — основной компонент хромосомного аппарата клеток. РНК образуют три пула — информационной, транспортной, рибосомальной РНК. Их функция — участие в синтезе белка.

К числу веществ, вступающих в химическое взаимодействие с нуклеиновыми кислотами, относятся нитриты, сернистый, азотистый, кислородный иприты, этиленоксид, этиленимин, гидразин и его производные, гидроксиламин, нитрозамины, ареноксиды, полициклические углеводо-роды, метаболиты афлатоксинов, соединения мышьяка, золота и многие другие вещества. Эти токсиканты образуют ковалентные связи с аминогруппами пуриновых и пиримидиновых оснований и с углеводно-фосфатной основой молекул нуклеиновых кислот. При этом происходит нарушение их свойств.

Многие ксенобиотики образуют нековалентные связи с ДНК. При этом меняется конформация макромолекул. Так, известно высокое сродство к нуклеиновым кислотам производных акридина, которые, встраиваясь в молекулу ДНК между соседними парами оснований (интеркалация), изменяют ее структуру.

Таков же, вероятно, механизм действия этидиумбромида, профлавина и др. Антрациклин, хлорахин, актиномицин и некоторые другие антибиотики также изменяют конформацию нуклеиновых кислот, не образуя с ними ковалентных связей.

Последствия повреждения ДНК и РНК зависят от дозы токсиканта и сопровождаются нарушениями процессов синтеза белка, клеточного деления и передачи наследственной информации.

Токсикодинамика. Взаимодействие токсикантов с липидами мембран

Липиды — инертные в химическом отношении молекулы, поэтому их взаимодействие с токсикантами в основном носит физико-химический характер. Важнейшая функция липидов — формирование биологических мембран.

Вещества, разрушающие, изменяющие структуру липидов, нарушающие взаимодействие между молекулами липидов (гидрофобные связи), повреждают биологические мембраны и поэтому называются  мембранотоксикантами- многие спирты, предельные и галогенированные углеводороды, бензол, толуол («неэлектролиты»), детергенты (ПАВ: мыла, сапонины), окислители, щелочи и другие денатурирующие агенты, а также яды, обладаюшие фосфолипазной активностью (яды змей и т. д.).

В результате нарушения структурной целостности мембран развиваются деформация, лизис клеток и их гибель. При действии сапонинов на мембраны эритроцитов развивается гемолиз. Действуя в малых дозах на возбудимые мембраны нервных клеток ЦНС, органические растворители, спирты вызывают седативно-гипнотический эффект.

Токсикодинамика. Взаимодействие с реактивными структурами возбудимых мембран

Реактивные структуры возбудимых мембран — это ионные каналы и селективные рецепторы для эндогенных биологически активных веществ (нейромедиаторов, гормонов и т. д.). Они представляют собой определенным образом организованный комплекс белковых молекул, встроенных в структуру биологической мембраны. Ионные каналы и рецепторные структуры в ряде случаев функционируют как единая система.

Типы селективных рецепторов мембран:

  • непосредственно формирующие ионные каналы;
  • связанные с G-протеинами;
  • обладающие тирозинкиназной активностью;
  • образующие межрецепторные сети.

Виды рецепторов:

1. Рецепторы, формирующие ионные каналы – каналобразующие рецепторы:

  • Н-холинорецептор
  • ГАМК-ергический
  • глицинергический

Н-холинорецептор является каналом для ионов Nа+, а ГАМК-ергический и глицинергический – для ионов Сl-.

Вещества, действующие на эти рецепторы:

  • курарин (на холинорецепторы)
  • никотин (на холинорецепторы)
  • анабазин (на холинорецепторы)
  • бициклофосфаты (на ГАМК-рецепторы)
  • норборнан (на ГАМК-рецепторы)
  • пикротоксинин (на ГАМК-рецепторы)
  • стрихнин (на рецепторы к глицину).

К этой же группе рецепторов можно отнести Nа+-, К+-, Са2+ – каналы возбудимых мембран, для которых пока не найдены эндогенные химические агонисты. Ионные каналы имеют рецепторную область связывания высокотоксичных ядов животного происхождения: тетродотоксин, сакситоксин, батрахотоксин и др.

2. Рецепторы, связанные с С-протеинами:

  • М-холинорецепторы
  • а-адренорецепторы
  • b-адренорецепторы и т. д.

Токсиканты могут нарушать передачу сигнала на любом из этапов его проведения, действуя на рецептор, аденилатциклазу и т. д.

Например, холерный и коклюшный токсины вызывают АДФ-рибозилирование G-протеина (белка превращающего гуанозинтрифосфат в гуанозиндифосфат) после его связывания с молекулой ГТФ.

В итоге развивается стойкая активация аденилатциклазы и перевозбуждение соответствующих клеток слизистых оболочек.

В настоящее время известно огромное количество веществ, синтетических и естественного происхождения, избирательно взаимодействующих с рецепторами данного типа – это многочисленные лекарственные средства (холинергические, катехоламинергические, серотонинергические препараты), интоксикация которыми развивается как при перевозбуждении, так и блокаде рецепторов.

Сюда же относится большая группа веществ, обладающих психодислептической активностью (диэтиламид лизергиновой кислоты, псилоцин, псилоцибин, буфотенин, мескалин, хинуклидинилбензилат — ВZ и т. д.).

3. Рецепторы с тирозинкиназной активностью. К рецепторам данного типа относятся, в частности, рецепторы к инсулину и гормону роста. Пусковым сигналом процессов, приводящих к активации клетки, является развивающееся фосфорилирование внутриклеточных белков по молекуле тирозина. Токсиканты, избирательно действующие на данный тип рецепторов, пока не известны.

4. Рецепторы, образующие межрецепторные сети. Наилучшим образом группе рецепторов данного типа изучены рецепторы к Fс-фрагменту  антител. С действием на рецепторы данного типа связывают экзоцитоз биологически активных веществ, и в частности, гистамина из тучных клеток, лежащий в основе анафилактических реакций на химические вещества, обладающие антигенными свойствами.

В зависимости от физико-химических свойств, путей поступления, метаболизма в организме, избирательности яды могут оказывать преимущественно местное, рефлекторное или резорбтивное действие. Однако в практике чаще всего встречаются все варианты действия ядовитых веществ.

Токсикодинамика ядовитых веществ

Поражения на месте контакта с ядовитым веществом могут появляться при попадании на кожу, слизистые оболочки дыхательных путей, пищеварительного тракта и глаз неорганических сильных кислот и щелочей, некоторых ОВ (кожно-нарывного, удушающего, раздражающего действия).

При оценке местного действия ядовитых веществ нередко используют такие определения, как раздражение, ожог и воспаление, характеризующие биологические реакции, интенсивность и выраженность которых зависят как от контактирующей ткани, так и от свойств ядовитого вещества.

Однако ядовитое вещество может не только повреждать ту ткань, с которой непосредственно взаимодействует, но и вызывать нарушения далеко за пределами ее как в результате всасывания и распространения по организму (резорбтивное действие), так и при раздражении чувствительных нервных окончаний (рефлекторное действие).

Многие ядовитые вещества, обладающие раздражающим действием (раздражающие и слезоточивые ОВ, удушающие ОВ и др.), специфически влияют на рецепторы, воспринимающие действие химических раздражителей (хеморецепторы).

Рефлексы с хеморецепторов оказывают влияние на:

  • активность дыхательного центра
  • сердечную деятельность
  • тонус кровеносных сосудов
  • химический и морфологический состав крови
  • функцию органов внутренней секреции.

В результате рефлекторного действия могут возникать ответные реакции в виде чихания, кашля, слезотечения, рвоты, а также изменения кровяного давления, частоты пульса и дыхания.

Подавляющее большинство ядовитых веществ (ОВ нервно-паралитического действия, ОВ кожно-нарывного действия, ОВ общеядовитого действия, ОВ психотомиметического действия, спирты, хлорированные углеводороды и другие яды) проявляют свое токсическое действие в результате резорбции.

При этом на месте всасывания яда эффект может оказаться практически незаметным. В то же время наблюдаются нарушения физиологических функций различных систем либо морфологические изменения в разных органах обратимого или необратимого характера.

Наиболее часто вследствие резорбции ядов нарушаются функции центральной нервной системы, дыхания и кровообращения, кроветворения, пищеварения и выделения, обмена веществ в организме.

В условиях целостного организма яды, оказывающие преимущественно местное действие, в той или иной степени вызывают и общие нарушения в организме.

В свою очередь яды, из-за резорбции которых нарушается общее состояние организма (нарушение функции центральной нервной системы, обмена и т. д.), оказывают значительное влияние и на течение местных процессов.

Это пример диалектической взаимосвязи общего и локального действия.

Теоретически любая молекула организма может стать мишенью для воздействия тех или иных токсикантов. При токсическом повреждении элемента, страдает функция молекулярной системы в целом. Действие токсикантов на молекулярные системы может сопровождаться избирательным повреждением отдельных субклеточных комплексов.

В этой связи иногда выделяют группы митохондриальных, лизосомальных, цитоплазматичкеских ядов, мембранотоксикантов, генотоксикантов и т.д.

Токсический процесс, развивающийся в многоклеточном организме, непременно связан со структурно-функциональными нарушениями клеток хотя бы одного типа. Токсическое повреждение органа сказывается на функциональном состоянии всей системы.

Функционирование целостного организма не возможно при повреждении образующих его органов (легких, печени, почек, сердца и т.д.) и систем. Любая надорганизменная биологическая система характеризуется высокой гетерогенностью чувствительности составляющих её индивидов к токсикантам.

Источник: https://farmf.ru/lekcii/toksikodinamika-mexanizm-toksicheskogo-dejstviya/

Механизм токсического действия. Как указывалось, практически все эффекты, выявляемые на начальных этапах развития интоксикации ФОС, могут быть объяснены явлением гиперактивации

Механизм токсического действия: Как указывалось, практически все эффекты, выявляемые на началь­ных

Как указывалось, практически все эффекты, выявляемые на начальных этапах развития интоксикации ФОС, могут быть объяснены явлением гиперактивации холинэргических механизмов передачи нервного импульса в ЦНС и на периферии.

В основе феномена, как установлено, лежит способность токсикантов угнетать активность ацетилхолинэстеразы, а также некоторые другие механизмы действия на холинэргические структуры, в частности, непосредственное взаимодействие с холинорецепторами, сопровождающееся прямым холиномиметическим эффектом, и повышением чувствительности холинорецепторов к ацетилхолину и негидролизуемым холиномиметикам (холиносенсибилизирующее действие).

Антихолинэстеразное действие. ФОС являются ингибиторами АХЭ, практически необратимо взаимодействующими с ее активным центром. В результате их действия угнетается процесс разрушения АХ в синапсах. Так, при отравлении ФОС существенно возрастает содержание ацетилхолина в мозге (более чем в три раза; нормальное содержание – 2,4 мкг/г ткани).

Медиатор накапливается в синаптической щели и вызывает стойкое перевозбуждение постсинаптических холинэргических рецепторов (непрямое холиномиметическое действие ФОС). Перевозбуждение холинорецепторов избытком ацетилхолина приводит к стойкой деполяризации постсинаптических мембран, иннервируемых клеток.

Это, в свою очередь, первоначально сопровождается гиперактивацией центральных и периферических М- и Н-холинореактивных механизмов передачи нервных импульсов, а затем, в случае крайне тяжелого отравления, – блоком проведения нервного импульса, преимущественно в Н-холинэргических синапсах.

Таким образом, отравление ФОС, по сути, – отравление эндогенным ацетилхолином, накапливающимся в крови и тканях, вследствие прекращения его разрушения ферментом ацетилхолинэстеразой.

С антихолинэстеразной теорией согласуются факты, свидетельствующие о существовании параллелизма между токсичностью ФОС и их способностью угнетать активность фермента in vitro, степенью угнетения холинэстеразы различных органов и выраженностью развивающихся эффектов. Легкое поражение ФОС, как правило, развивается при угнетении АХЭ более чем на 40%, средней степени тяжести – более 70%, тяжелой – около 90%.

Способность ФОС взаимодействовать с активным центром энзима объясняют структурным сходством молекул ядов с молекулой ацетилхолина. Некоторые ФОС (зарин, диизопропилфторфосфат и др.

) имитируют сложноэфирную часть молекулы медиатора, поскольку группировка (Р=О) поляризована так же, как и карбонильная (С=О) группа ацетилхолина. Другие ФОС (например, фосфорилхолины) могут имитировать как эфирную, так и катионную часть ацетилхолина.

При этом катионная головка, взаимодействуя с анионным участком активного центра фермента, обеспечивает ориентацию на нем токсиканта, а фосфорсодержащая часть молекулы яда взаимодействует с эстеразным центром.

И в первом и во втором случае взаимодействие ФОС с активным центром ацетилхолинэстеразы приводит к образованию прочной ковалентной связи атома фосфора с гидроксильным радикалом серина, входящего в структуру эстеразного участка активного центра холинэстеразы, вызывая его фосфорилирование.

Таким образом, можно представить, что взаимодействие фермента с ФОС проходит по тому же механизму, что и с ацетилхолином. Взаимодействие ацетилхолина, зарина и VX с активным центром холинэстеразы показано на рис. 47.

Рисунок 47. Схема взаимодействия ацетилхолина, зарина и фосфорилтиохолина с активным центром ацетилхолинэстеразы

Чем выше структурное сходство ФОС с ацетилхолином, тем, как правило, выше его антихолинэстеразная активность и токсичность.

Принципиальное различие во взаимодействии ацетилхолина и ФОС с АХЭ состоит в том, что реакция декарбоксилирования активного центра после гидролиза АХ проходит практически мгновенно и энзим снова восстанавливает способность взаимодействовать с субстратом, а дефосфорилирование – протекает медленно.

Причем с течением времени изначально обратимая связь ФОС-АХЭ, которая может разрушаться спонтанно (“спонтанная реактивация”) или с помощью некоторых веществ, вводимых отравленному (реактиваторы АХЭ), становится необратимой, неспособной к разрушению.

Таким образом, взаимодействие ФОС и АХЭ проходит в две фазы и может быть представлено следующим образом:

Процесс превращения образовавшейся в первой фазе обратимо фосфорилированной холинэстеразы в необратимо связанную форму называется “старение” фосфорилхолинэстеразы.

Как скорость “спонтанной реактивации” АХЭ (и самопроизволное восстановление ее активности), так и “старения”, зависит от структуры ФОС, а именно от строения алкильных радикалов при атоме фосфора. Чем “тяжелее” радикалы, тем ниже скорость “спонтанной реактивации” и выше скорость “старения”.

Поэтому АХЭ, ингибированная VX (R -OC2H5), стареет чрезвычайно медленно, зарином (R -OCН(СH3)2) – в течение нескольких часов, зоманом (R -OCНСН3С(СH3)3) – в считанные минуты. В основе “старения” лежит процесс отщепления от атома фосфора, связанного с активным центром энзима, алкильных радикалов.

При этом одновременно изменяется конформация белковой части энзима (с этим, вероятно, связано то обстоятельство, что фосфорилированные одним и тем же веществом холинэстеразы, выделенные из тканей разных млекопитающих, “стареют” с разной скоростью).

В настоящее время обнаружены соединения (гидроксиламин, гидроксамовые кислоты, оксимы), способные, взаимодействуя с остатком ФОС, связанного с АХЭ, отрывать его от молекулы энзима (если не произошло его “старение”) и, тем самым, восстанавливать ферментативную активность. Такие вещества, получившие название реактиваторов холинэстеразы, при своевременном введении отравленному существенно ослабляют выраженность токсического процесса, что подтверждает справедливость антихолинэстеразной теории действия ФОС.

Даже ингибированная Vх ацетилхолинэстераза, “стареющая” с минимальной скоростью, а “спонтанно реактивирующаяся” относительно быстро, дефосфорилируется в течение нескольких суток. Вот почему ФОС называют необратимыми ингибиторами холинэстеразы.

In vitro способность ФОС угнетать АХЭ уменьшается при увеличении концентрации в инкубационной среде естественного субстрата энзима – ацетилхолина. По этой причине ФОС называют также конкурентными ингибиторами АХЭ.

За активный центр энзима ФОС конкурируют не только с ацетилхолином, но и с ингибиторами энзима из других классов соединений, в частности с карбаматами. Последние вызывают обратимое карбамилирование активного центра АХЭ и потому называются обратимыми ингибиторами АХЭ.

Установленная в опытах in vitro и in vivo способность обратимых ингибиторов холинэстеразы (прозерина, галантамина и т.д.) защищать холинэстеразу от угнетения ФОС, предупреждать действие этих ядов на органы и системы и, тем самым, препятствовать развитию интоксикации используется на практике при разработке профилактических антидотов ФОС (см. ниже).

Холинэстеразная активность выявляется не только в синаптических структурах, но и в крови млекопитающих и человека.

Причем в мембране эритроцитов содержится ацетилхолинэстераза, по сути, идентичная энзиму нервной ткани, а в плазме крови – бутирилхолинэстераза, отличающаяся от АХЭ более высоким сродством к эфирам холина и жирных кислот с большей молекулярной массой, чем ацетат (например, бутирилхолину – эфиру холина и масляной кислоты).

ФОС, при поступлении в организм, угнетают оба типа холинэстераз крови. Степень инактивации энзимов пропорциональна степени угнетения активности синаптической ацетиохолинэстеразы. Это явление используется для диагностики интоксикации ФОС, а также для верификации степени тяжести поражения.

При отсутствии иных причин, снижение активности холинэстеразы крови более чем на 50% свидетельствует об интоксикации антихолинэстеразными ядами. При необходимости контролировать состояние синаптического энзима, для исследования можно изучать активность АХЭ в эритроцитах, выделенных методом центрифугирования.

Способность ФОС угнетать холинэстеразу используют также для индикации ФОС в воде, продовольствии и т.д. (биохимический метод индикации).

Действие на холинорецепторы. Из возможных неантихолинэстеразных механизмов наиболее важным является действие ФОС на холинорецепторы. Поскольку и холинорецепторы, и холинэстераза адаптированы к одному и тому же нейромедиатору, ингибиторы холинэстеразы могут проявить активность и по отношению к холинорецепторам.

По-видимому, блокада проведения нервно-мышечного сигнала, развивающаяся при смертельной интоксикации ФОС, связана не только со стойким деполяризующим действием избыточного количества ацетилхолина, но и с прямым действием ФОС на нервно-мышечные синапсы (по типу действия деполяризующих миорелаксантов).

Так, в эксперименте на изолированном нервно-мышечном препарате млекопитающего, при внесении в инкубационную среду достаточной дозы ФОС, наблюдается полное прекращение передачи нервного импульса с нервного волокна на мышцу.

Однако через некоторое время на фоне практически “тотального” угнетения активности холинэстеразы отмечается восстановление нервно-мышечной проводимости в синапсах. Повторно блок можно вызвать, вновь добавив ФОС в инкубационную среду.

Сенсибилизирующее действие на холинорецептор зарина, ДФФ и других ФОС, проявляется, в частности, существенным повышении чувствительности отравленных экспериментальных животных к холиномиметикам, негидролизуемым ацетилхолинэстеразой (никотину, ареколину и т.д.).

Установлено, что сенсибилизация к М-холиномиметикам (ареколину) сохраняется значительно дольше, чем к Н-холиномиметикам (никотину). Причины различия, вероятно, обусловлены особенностями проведения нервных импульсов в М- и Н-холинэргических синапсах (см. выше).

Восстановление нормального проведения нервного импульса у лиц, перенесших интоксикацию ФОС, осуществляется за счет медленно протекающих процессов дэфосфорилирования АХЭ (“спонтанная реактивация”), синтеза АХЭ в перикарионе нервных клеток de novo и транспорта ее в нервные окончания, снижения содержания ацетилхолина в синаптической щели, десенситизации холинорецепторов (понижение чувствительности к ацетилхолину).

Нехолинэргические механизмы токсического действия. Помимо действия на холинореактивные структуры, ФОС, в высоких дозах, обладают прямым повреждающим действием на клетки различных органов и тканей (нервной системы, печени, почек, системы крови и т.д.

), в основе которого лежат общие механизмы цитотоксичности: нарушение энергетического обмена клетки; нарушение гомеостаза внутриклеточного кальция; активация свободнорадикальных процессов в клетке; повреждение клеточных мембран.

Чем менее токсично ФОС, тем значимее роль указанных механизмов в развитии проявлений тяжелого поражения данным токсикантом.

Существуют ФОС полностью лишенные антихолинэстеразной активности, токсичность которых обусловлена исключительно их цитотоксическим действием (три-о-крезилфосфат). Клиника отравления такими веществами полностью отличается от описанной выше.

Предыдущая234567891011121314151617Следующая

Дата добавления: 2016-01-03; просмотров: 761; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/6-39256.html

Глава 2.1. механизмы токсического действия

Механизм токсического действия: Как указывалось, практически все эффекты, выявляемые на началь­ных

Взаимодействие токсиканта или продуктов его превращения в организме со структурными элементами биосистем, лежащее в основе развивающегося токсического процесса, называется механизмом токсического действия. Взаимодействие осуществляется за счет физико-химических и химических реакции.

Токсический процесс, инициируемый физико-химическими реакциями, как правило, обусловлен растворением токсиканта в определенных средах (водной или липидной) клеток и тканей организма.

При этом существенно изменяются физико-химические свойства среды-растворителя (рН, вязкость, электропроводность, сила межмолекулярных взаимодействий и т.д.). Особенность данного типа взаимодействия – отсутствие строгой зависимости качества развивающегося эффекта от химических свойств молекулы токсиканта.

Таким образом, действуют на ткани все кислоты, щелочи, сильные окислители, некоторые органические растворители и лишенные специфической активности высокомолекулярные соединения.

Чаще в основе токсического действия лежат химические реакции токсиканта с определенным структурным элементом живой системы. Структурный компонент биологической системы, с которым вступает в химическое взаимодействие токсикант, называется его “рецептором” или “мишенью”.

Механизмы токсического действия подавляющего большинства химических веществ в настоящее время неизвестны.

В этой связи, очень многие описываемые ниже классы молекул и молекулярных комплексов, образующих организм, рассматриваются, по большей части, лишь как вероятные рецепторы (мишени) действия ядов.

Рассмотрение их в этом ракурсе правомочно, поскольку в основе действия некоторых хорошо изученных токсикантов лежит взаимодействие с представителями именно этих классов биомолекул.

1. Определение понятия “рецептор” в токсикологии

Понятие “рецептор” весьма емкое. Наиболее часто в биологии его используют в следующих смыслах:

1. Общее понятие. Рецепторы – это участки относительно специфического связывания на биосубстрате ксенобиотиков (или эндогенных молекул), при условии, что процесс связывания подчиняется закону действующих масс. В качестве рецепторов могут выступать целые молекулы белков, нуклеиновых кислот, полисахаридов, липидов или их фрагменты.

В отношении фрагмента биомолекулы, которая непосредственно участвует в образовании комплекса с химическим веществом, часто используют термин – “рецепторная область”. Например, рецептором оксида углерода в организме является молекула гемоглобина, а рецепторной областью – ион двухвалентного железа, заключенный в порфириновое кольцо гема.

2. Селективные рецепторы. По мере эволюционного усложнения организмов формируются специальные молекулярные комплексы – элементы биологических систем, обладающие высоким сродством к отдельным химическим веществам, выполняющим функции биорегуляторов (гормоны, нейромедиаторы и т.д.).

Участки биологических систем, обладающие наивысшим сродством к отдельным специальным биорегуляторам, получили название “селективные рецепторы”. Вещества, взаимодействующие с селективными рецепторами в соответствии с законом действующих масс, называются лигандами селективных рецепторов.

Взаимодействие эндогенных лигандов с селективными рецепторами имеет особое значение для поддержания гомеостаза.

Многие селективные рецепторы состоят из нескольких субъединиц, из которых лишь часть имеет участки связывания лигандов. Нередко термин “рецептор” используют для обозначения только таких лиганд-связывающих субъединиц.

3. Постоянные рецепторы – это селективные рецепторы, строение и свойства которых кодируется с помощью специальных генов или постоянных генных комплексов. На уровне фенотипа изменение рецептора путем генной рекомбинации развивается чрезвычайно редко.

Возникающие порой в ходе эволюции вследствие полигенетических трансформаций изменения аминокислотного состава белка, формирующего селективный рецептор, как правило, слабо сказывается на функциональных характеристиках последнего, его сродстве к эндогенным лигандам и ксенобиотикам.

К числу постоянных рецепторов относятся:

– рецепторы нейромедиаторов и гормонов. Как и другие селективные рецепторы, эти рецепторы способны избирательно взаимодействовать и с некоторыми ксенобиотиками (лекарствами, токсикантами).

Ксенобиотики могут при этом выступать как в качестве агонистов, так и антагонистов эндогенных лигандов.

В итоге активируется или подавляется некая биологическая функция, находящаяся под контролем данного рецепторного аппарата;

– энзимы – белковые структуры, селективно взаимодействующие с субстратами, превращение которых они катализируют. Энзимы также могут взаимодействовать с чужеродными веществами, которые в этом случае становятся либо ингибиторами, либо аллостерическими регуляторами их активности;

– транспортные протеины – избирательно связывают эндогенные лиганды определенного строения, осуществляя их депонирование или перенос через различные биологические барьеры. Токсиканты, взаимодействующие с транспортными протеинами, также выступают либо в качестве их ингибиторов, либо аллостерических регуляторов.

4. Рецепторы с изменяющейся структурой. В основном это антитела и антигенсвязывающие рецепторы Т-лимфоцитов. Рецепторы данного типа формируются в клетках предшественниках зрелых клеточных форм вследствие индуцированной внешними воздействиями рекомбинации 2 – 5 генов, контролирующих их синтез.

Если рекомбинация осуществилась в процессе дифференциации клеток, то в зрелых элементах будут синтезироваться рецепторы только определенного строения.

Таким способом формируются селективные рецепторы к конкретным лигандам, а пролиферация приводит к появлению целого клона клеток, содержащих эти рецепторы.

Как следует из приведенных определений, в биологии термин “рецептор” в основном используется для обозначения структур, принимающих непосредственное участие в восприятии и передаче биологических сигналов, и способных избирательно связывать помимо эндогенных лигандов (нейромедиаторов, гормонов, субстратов) некоторые чужеродные соединения.

В токсикологии (как и фармакологии) термином “рецептор” обозначают любой структурный элемент живой (биологической) системы, с которым вступает в химическое взаимодействие токсикант (лекарство). В таком прочтении это понятие ввел в химеобиологию в начале ХХ века Пауль Эрлих (1913).

Спектр энергетических характеристик рецептор-лигандного взаимодействия необыкновенно широк: от формирования слабых, легко разрушающихся связей, до образования необратимых комплексов (см. выше).

Характер взаимодействия и структура сформировавшегося комплекса зависят не только от строения токсиканта, конформации рецептора, но и от свойств среды: рН, ионной силы и т.д.

В соответствии с законом действующих масс, количество образовавшихся комплексов вещество-рецептор определяется энергией взаимодействия (сродством) и содержанием обоих компонентов реакции (вещества и рецептора к нему) в биологической системе.

Рецепторы могут быть “немыми” и активными. “Немой” рецептор – структурный компонент биологической системы, взаимодействие которого с веществом не приводит к формированию ответной реакции (например, связывание мышьяка белками, входящими в состав волос, ногтей).

Активный рецептор – структурный компонент биологической системы, взаимодействие которого с токсикантом инициирует токсический процесс.

Для того, чтобы избежать терминологических трудностей, для обозначения структурных элементов, взаимодействуя с которыми токсикант инициирует токсический процесс, вместо термина “рецептор”, часто используют термин “структура-мишень”.

Принимаются постулаты:

– токсическое действие вещества выражено тем сильнее, чем большее количество активных рецепторов (структур-мишеней) вступило во взаимодействие с токсикантом;

– токсичность вещества тем выше, чем меньшее его количество связывается с “немыми” рецепторами, чем эффективнее оно действует на активный рецептор (структуру-мишень), чем большее значение имеет рецептор и повреждаемая биологическая система для поддержания гомеостаза целостного организма.

Любая клетка, ткань, орган содержат огромное количество потенциальных рецепторов различных типов (“запускающих” различные биологические реакции), с которыми могут вступить во взаимодействие лиганды.

С учетом вышесказанного, связывание лиганда (как эндогенного вещества, так и ксенобиотика) на рецепторе данного типа является избирательным лишь в определенном диапазоне концентраций.

Увеличение концентрации лиганда в биосистеме приводит к расширению спектра типов рецепторов, с которыми он вступает во взаимодействие, а следовательно, изменению его биологической активности. Это также одно из фундаментальных положений токсикологии, доказанное многочисленными наблюдениями.

Мишенями (рецепторами) для токсического воздействия могут быть:

– структурные элементы межклеточного пространства;

– структурные элементы клеток организма;

– структурные элементы систем регуляции клеточной активности.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/10_303965_glava--mehanizmi-toksicheskogo-deystviya.html

Механизм токсического действия. Как указывалось, практически все эффекты, выявляемые на началь­ных этапах развития интоксикации ФОС

Механизм токсического действия: Как указывалось, практически все эффекты, выявляемые на началь­ных

⇐ Предыдущая234567891011Следующая ⇒

Как указывалось, практически все эффекты, выявляемые на началь­ных этапах развития интоксикации ФОС, могут быть объяснены явлени­ем гиперактивации холинергических механизмов передачи нервного им­пульса в ЦНС и на периферии.

В основе феномена, как установлено, лежит способность токсикантов угнетать активность ацетилхолинэстера­зы, а также некоторые другие механизмы действия на холинергические структуры, в частности, непосредственное взаимодействие с холиноре­цепторами, сопровождающееся прямым холиномиметическим эффектом и повышением чувствительности холинорецепторов к ацетилхолину и негидролизуемым холиномиметикам (холиносенсибилизирующее дей­ствие).

Антuxолинэстеразное действие. ФОС являются ингибиторами ацетил­холинэстеразы (АХЭ), практически необратимо взаимодействующими с ее активным центром. В результате их действия угнетается процесс разруше­ния ацетилхолина в синапсах.

Так, при отравлении ФОС существенно воз­растает содержание ацетилхолина в мозге (более чем в три раза; нормаль­ное содержание – 2,4 мкг/г ткани). Медиатор накапливается в синаптиче­ской щели и вызывает стойкое перевозбуждение постсинаптических холи­нергических рецепторов (непрямое холиномиметическое действие ФОС).

Перевозбуждение холинорецепторов избытком ацетилхолина приводит к стойкой деполяризации постсинаптических мембран иннервируемых кле­ток.

Это, в свою очередь, первоначально сопровождается гиперактивацией центральных и периферических М- и Н-холинореактивных механизмов передачи нервных импульсов, а затем, в случае крайне тяжелого отравле­ния, – блоком проведения нервного импульса, преимущественно в Н-хо­линергических синапсах. Таким образом, отравление ФОС, по сути ­отравление эндогенным ацетилхолином, накапливающимся в крови и тка­нях вследствие прекращения его разрушения ферментом ацетилхолинэсте­разой.

Чем выше структурное сходство ФОС с ацетилхолином, тем, как пра­вило, выше его антихолинэстеразная активность и токсичность.

Принципиальное различие во взаимодействии ацетилхолина и ФОС с АХЭ состоит в том, что реакция декарбоксилирования активного центра после гидролиза ацетилхолина проходит практически мгновенно и энзим снова восстанавливает способность взаимодействовать с субстратом, а дефосфорилирование – протекает медленно.

Причем с течением време­ни изначально обратимая связь ФОС – АХЭ, которая может разрушаться спонтанно («спонтанная реактивация») или с помощью некоторых ве­ществ, вводимых отравленному (реактиваторы АХЭ), становится необра­тимой, неспособной к разрушению.

Процесс превращения образовавшейся в первой фазе обратимо фосфорилированной холинэстеразы в необратимо связанную форму называ­ется «старением» фосфорилхолинэстеразы.

Скорость как «спонтаннойреактивации» АХЭ (и самопроизвольное восстановление ее активности), так и «старения» зависит от структуры ФОС, а именно от строения алки­льных радикалов при атоме фосфора.

Чем «тяжелее» радикалы, тем ниже скорость «спонтанной реактивации» и выше скорость «старения».

В настоящее время обнаружены соединения (гидроксиламин, гидро­ксамовые кислоты, оксимы), способные, взаимодействуя с остатком ФОС, связанного с АХЭ, отрывать его от молекулы энзима (если не произошло его «старение») И тем самым восстанавливать ферментативную актив­ность. Такие вещества, получившие название реактиваторов холинэсте­разы, при своевременном введении отравленному существенно ослабляют выраженность токсического процесса, что подтверждает справедливость антихолинэстеразной теории действия ФОС.

Даже ингибированная VХ ацетилхолинэстераза, «стареющая» с мини­мальной скоростью, а «спонтанно реактивирующаяся» относительно бы­стро, дефосфорилируется в течение нескольких суток. Вот почему ФОС называют необратимыми ингибиторами холинэстеразы.

Iп vitro способ­ность ФОС угнетать АХЭ уменьшается при увеличении концентрации в инкубационной среде естественного субстрата энзима – ацетилхолина. По этой причине ФОС называют также конкурентными ингибиторами АХЭ.

За активный центр энзима ФОС конкурируют не только с ацетил­холином, но и с ингибиторами энзима из других классов соединений, в частности с карбаматами. Последние вызывают обратимое карбамилиро­вание активного центра АХЭ и потому называются обратимыми ингиби­торами АХЭ.

Установленная в опытах in vitro и in vivo способность обра­тимых ингибиторов холинэстеразы (прозерина, галантамина и т. д.) защищать холинэстеразу от угнетения ФОС, предупреждать действие этих ядов на органы и системы и тем самым препятствовать развитию ин­токсикации используется на практике при разработке профилактических антидотов ФОС.

Холинэстеразная активность выявляется не только в синаптических структурах, но и в крови млекопитающих и человека.

Способность ФОС угнетать холинэстеразу используют также для ин­дикации ФОС в воде, продовольствии и т. д. (биохимический метод ин­дикации).

Действие на холинорецепторы. Из возможных неантихолинэстеразных механизмов наиболее важным является действие ФОС на холинорецепторы. Поскольку и холинорецепторы, и холинэстераза адаптированы к одному и тому же нейромедиатору, ингибиторы холинэстеразы могут проявить активность и по отношению к холинорецепторам.

По-видимому, блокада проведения нервно-мышечного сигнала, раз­вивающаяся при смертельной интоксикации ФОС, связана не только со стойким деполяризующим действием избыточного количества ацетилхо­лина, но и с прямым действием ФОС на нервно-мышечные синапсы (по типу действия де поляризующих миорелаксантов).

Нехолинергические механизмы токсического действия. Помимо действия на холинореактивные структуры, ФОС в высоких дозах обладают прямым повреждающим действием на клетки различных органов и тка­ней (нервной системы, печени, почек, системы крови и т. д.

), В основе которого лежат общие механизмы цитотоксичности: нарушение энерге­тического обмена клетки; нарушение гомеостаза внутриклеточного каль­ция; активация свободно радикальных процессов в клетке; повреждение клеточных мембран.

Чем менее токсично ФОС, тем значимее роль ука­занных механизмов в развитии проявлений тяжелого поражения данным токсикантом. Существуют ФОС, полностью лишенные антихолинэсте­разной активности, токсичность которых обусловлена исключительно их цитотоксическим действием (три-о-крезилфосфат).

Клиническая карти­на отравления такими веществами полностью отличается от описанной выше.

Мероприятия медицинской защиты.

Специальные санитарно-гигиенические мероприятия:

· использование индивидуальных технических средств защиты (средства защиты кожи;

· средства защиты органов дыхания) в зоне химического заражения;

· участие медицинской службы в проведении химической развед­ки в районе расположения войск; проведение экспертизы воды и продовольствия на зараженность ОВТВ; о запрет на использование воды и продовольствия из непроверен­ных источников;

· обучение личного состава правилам поведения на зараженной местности.

Специальные профилактические медицинские мероприятия:

· проведение частичной санитарной обработки (использование ИПП) в зоне химического заражения;

· проведение санитарной обработки пораженных на передовых этапах медицинской эвакуации.

· применение профилактических антидотов перед входом в зону химического заражения и контактом с пораженными, поступаю­щими из очага.

Специальные лечебные мероприятия:

· применение антидотов и средств патогенетической и симптома­тической терапии состояний, угрожающих жизни, здоровью, дееспособности, в ходе оказания первой (само- и взаимопо­мощь), доврачебной и первой врачебной (элементы) помощи пострадавшим;

· подготовка и проведение эвакуации.

⇐ Предыдущая234567891011Следующая ⇒

Дата добавления: 2016-11-18; просмотров: 253 | Нарушение авторских прав

Рекомендуемый контект:

Похожая информация:

Поиск на сайте:

Источник: https://lektsii.org/10-19261.html

Medic-studio
Добавить комментарий