Методы получения чистых культур, основанные на механическом

Выделение чистой культуры

Методы получения чистых культур, основанные на механическом

Культивирование микроорганизмов, помимо состава питательной сре­ды, зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.).

При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболиз­ма каждой группы бактерий.

Существуют методы культивирования мик­роорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.

Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:

а) мето­ды, основанные на принципе механического разделения микроорганизмов;

б) методы, основанные на биологиче­ских свойствах микроорганизмов.

Методы, основанные на принципе механического разде­ления микроорганизмов

Рассев шпателем по Дригальскому. Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят кап­лю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель пе­реносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды.

Далее шпа­тель переносят в 3-ю чашку и аналогичным образом про­изводят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й — минимальное. В зависимо­сти от содержания микробных клеток в исследуемом ма­териале на одной из чашек вырастают отдельные коло­нии, пригодные для выделения чистой культуры микро­организма.

Метод Пастера (метод разведений). Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 0,5 мл из каждой пробирки.

Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале.

(Микробное число — количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).

Рассев петлей (посев штрихами). Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый ма­териал петлей вносят в первый сектор и проводят ею па­раллельные линии по всему сектору на расстоянии одна от другой около 5 мм.

Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии.

Кроме того, можно наливать разведен­ные растворы смешанной культуры на поверхность твер­дых сред в чашках.

Метод фильтрации. Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержа­щихся микроорганизмов по величине. Этот метод при­меняется главным образом для очистки вирусов от бак­терий, а также при получении фагов и токсинов (в фильтрате — чистый фаг, очищенный токсин).

Методы, основанные на биологических свойствах мик­роорганизмов

Создание оптимальных условий для размножения

  • Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий. Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С. Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).
  • Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода. Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.). Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО2 (кампилобактер, геликобактер).
  • Метод обогащения. Исследуемый материал за­севают на элективные питательные среды, способствую­щие росту определенного вида микроорганизмов.

Методы выделения чистых культур микроорганизмов

Метод Пастера (метод предельных разведений).Заключается в том, что из исследуемого материала делают ряд последовательных разведений в жидкой питательной среде.

Для этого каплю посевного материала вносят в пробирку со стерильной жидкой средой, из нее каплю переносят в следующую пробирку и так засевают до 8…10 пробирок.

С каждым разведением количество микробных клеток, попадающих в среду, будет уменьшаться и можно получить такое разведение, в котором во всей пробирке со средой будет находиться только одна микробная клетка, из которой разовьется чистая культура микроорганизма.

Так как в жидких средах микробы растут диффузно, т.е. легко распределяются во всей среде, то изолировать одну микробную клетку от другой трудно.

Таким образом, метод Пастера не всегда обеспечивает получение чистой культуры.

Поэтому в настоящее время этот метод используется, главным образом, для предварительного уменьшения концентрации микроорганизмов в материале перед посевом его в плотную среду для получения изолированных колоний.

Методы механического разделения микроорганизмов с использованием плотных питательных сред.К таким методам относятся метод Коха и метод Дригальского.

Метод Коха (метод глубинного посева).

Исследуемый материал вносят бактериологической петлей или пастеровской пипеткой в пробирку с расплавленной плотной питательной средой. Равномерно размешивают содержимое пробирки, вращая ее между ладонями.

Каплю разведенного материала переносят во вторую пробирку, из второй – в третью и т.д. Содержимое каждой пробирки, начиная с первой, выливают в стерильные чашки Петри.

После застывания среды в чашках, их помещают в термостат для культивирования.

Для выделения анаэробных микроорганизмов по методу Коха необходимо ограничить доступ кислорода к культуре.

С этой целью поверхность глубинного посева в чашке Петри заливают стерильной смесью парафина и вазелина (1:1). Можно также оставлять посевной материал, тщательно перемешанный с агаризованной средой, непосредственно в пробирке.

Ватную пробку при этом заменяют резиновой или заливают поверхность агара смесью парафина и вазелинового масла. Чтобы извлечь выросшие колонии анаэробных микроорганизмов, пробирки слегка нагревают, быстро вращая над пламенем горелки.

Агар, прилегающий к стенкам, расплавляется, и столбик легко выскальзывает в подготовленную чашку Петри.

Далее столбик с агаром разрезают стерильным скальпелем, колонии извлекают стерильной петлей или стерильной капиллярной рубкой и переносят в жидкую среду.

Метод Дригальского основан на механическом разделении микробных клеток на поверхности плотной питательной среды в чашках Петри.

Каждая микробная клетка, фиксируясь в определенном месте, начинает размножаться, образуя колонию.

Для посева по методу Дригальского используют несколько чашек Петри, залитых плотной питательной средой.

На поверхность среды вносят каплю исследуемого материала.

Затем с помощью стерильного шпателя эту каплю распределяют по всей питательной среде (посев газоном).

Посев также можно проводить штрихом, используя бактериологическую петлю. Этим же шпателем или петлей осуществляют посев во вторую, третью и т.д. чашки.

Как правило, в первой чашке после культивирования посева появляется рост микробов в виде сплошного налета, в последующих чашках содержание микроорганизмов снижается и образуются изолированные колонии, из которых отсевом можно легко выделить чистую культуру.

Таким образом, в первых секторах получается сплошной рост, а вдоль последующих штрихов вырастут обособленные колонии, представляющие собой потомство одной клетки.

В целях экономии сред и посуды можно пользоваться одной чашкой, разделив ее на сектора, и последовательно засевать их штрихом (метод истощающего штриха).

Для этого материал берут петлей и проводят ею ряд параллельных штрихов сначала по поверхности первого сектора, а затем последовательно оставшимися на петле клетками засевают все другие сектора.

При каждом последующем штрихе происходит уменьшение количества засеваемых клеток.

Метод выделения чистых культур с помощью химических веществ используется при изолировании культур микроорганизмов, устойчивых к определенным химическим веществам.

Например, с помощью этого метода можно выделить чистую культуру туберкулезных микобактерий, устойчивых к действию кислот, щелочей и спирта. В этом случае исследуемый материал перед посевом заливают 15 % раствором кислоты или антиформином и выдерживают в термостате в течение 3…4 часов.

После воздействия кислоты или щелочи клетки туберкулезной палочки остаются живыми, а все другие микроорганизмы, содержащиеся в исследуемом материале, погибают. После нейтрализации кислоты или щелочи обработанный материал высевают на плотную среду и получают изолированные колонии возбудителя туберкулеза.

Биологические методы выделения чистых культур патогенных микроорганизмов основаны на заражении исследуемым материалом лабораторных животных, восприимчивых к данному виду возбудителя.

Если патогенный микроорганизм содержится в исследуемом объекте, то лабораторное животное заболевает и погибает. После вскрытия павшего животного из внутренних органов делают посевы на специальные среды, на которых вырастают чистые культуры выделяемых микробов.

Предыдущая567891011121314151617181920Следующая

Дата добавления: 2016-02-27; просмотров: 1782;

Выделение чистой культуры бактерий

Чистой называют культуру, содержащую микроорганизмы одного вида и полученную как потомство одной клетки. Чистые культуры можно получить из исходной микробной клетки, изолиро­ванной при помощи микроманипулятора, или из изолированных колоний путем их пересева в отдельные пробирки с питательной средой.

Для выделения чистой культуры используют следующие методы.

1. Метод Дригалъского.При этом методе расплавленную питательную среду разливают в 3 чашки Петри. В первую чашку вносят одну каплю исследуемого материала и сте­рильным шпателем распределяют его по поверхности питательной среды. Затем шпатель переносят во вторую и далее в третью чашки, втирая в поверхность питательных сред оставшийся на нем материал.

При посеве этим методом на второй и на третьей чашках вырастают изолированные колонии. Полученные отдельные колонии пересевают в пробирки с питательной средой для получения чистой культуры микроорганизма.

2. Метод параллельных штрихов.При этом способе материал с помощью бактериологической петли распределяют по поверхности агара параллельными штрихами в одном направлении.

Затем, повернув чашку на 90°, проводят штрихи в направлении, перпендикулярном первым штрихам. При таком способе посева материал, находящийся в петле, расходу­ется постепенно, и по линиям штрихов, нанесенных в конце посева, вырастают изолированные колонии микробов.

3. Метод Коха (метод рассева в глубине среды).При этом методе в пробирку с агаром, расплавленным и остуженным до 43-45°С, вносят одну бактериологическую петлю исследуемого материала и тщательно перемешивают.

После этого из этой пробирки одну петлю материала переносят во вторую пробирку, а затем из нее – в третью пробирку. Приготовленные разведения бактерий выливают из пробирок в стериль­ные чашки Петри. После застывания среды чашки помещают в термостат. Количество колоний в чашках с питательной средой уменьшается по мере разведения материала.

Контрольные вопросы по теме занятия:

1. Характер роста бактерий в жидких, на полужидких и плотных питательных средах.

Характеристика колоний микроорганизмов.

3. Пигменты бактерий и их роль для микроорганизмов.

4. методы выделения чистых культур бактерий.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А.

Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

2. О.К. Поздеев. Медицинская микробиология.

М., ГЭОТАР-МЕДИА, 2005.

3. Медицинская микробиология. Справочник. Под ред. В.И. Покровского и О.К. Поздеева. М., ГЭОТАР-МЕД, 1998.

ЗАНЯТИЕ 5

ТЕМА ЗАНЯТИЯ: Ферменты бактерий. Изучение ферментативной активности микроорганизмов. Дыхание бактерий. Методы культивирования и выделения чистой культуры анаэробов.

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ: Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов. Ознакомиться с процессами дыхания бактерий. Изучить методы культивирования и выделения чистой культуры анаэробов.

ЗАДАЧИ ЗАНЯТИЯ:

1. Ознакомиться с ферментами бактерий.

Изучить методы определения ферментативной активности микроорганизмов.

3. Ознакомиться с процессами дыхания бактерий.

4. Изучить методы культивирования и выделения чистой культуры анаэробов.

Ферменты бактерий

Все биохимические процессы в клетке микро­организмов, связанные с метаболизмом, ростом и размножением, совершаются при участии ферментов (энзимов).

Ферменты синтезируются самой микробной клеткой, и имеют сложное строение. Они представляют собой либо только белок с высокой молекулярной массой (трипсин, пепсин и др.), либо состоят из белка (апофермента), связанного с кофактором (коферментом). Кофермент может быть низкомолекулярным неорганическим (металл) или органическим ве­ществом.

Классификация ферментов основана на типах реакций, которые они катализируют.

Все ферменты делятся на шесть классов:

1). Оксидоредуктазы — ферменты переноса электронов. Эти ферменты катализируют окис­лительно-восстановительные реакции. К ним отно­сятся дегидрогеназы (НАД, НАДФ, ФАД), каталаза, цитохромы.

2).

Трансферазы — ферменты переноса групп между молекулами от одних соединений к другим. К ним относятся ацетилтрансфераза, фосфотрансфераза, аминотрансфераза.

3). Гидролазы — ферменты переноса функциональных групп с участием воды. К этому классу ферментов относятся пептидгидролазы, глюкозидаза, амилазы, эстеразы, липаза, фосфатаза.

4). Лиазы — ферменты, отщепляющие или присоединяющие без участия воды различные соединения с двойной связью.

К этим ферментам относятся пируватдекарбоксилаза, альдолаза.

5). Изомеразы — ферменты, переносящие группы внутри молекул с образованием изомерных форм. К этим ферментам относятся триизофосфатизомераза, глюкозофосфатизомераза.

6).

Лигазы (синтетазы) — ферменты, объединяющие две молекулы с одновременным разрывом фосфатных связей с использованием энергии АТФ. К лигазам относятся ферменты, катализирующие синтез сложных органических веществ из простых соединений (аспарагинсинтетаза, кокарбоксилазы).

Активность ферментов измеряют в международных еди­ницах (ME). 1 ME соответствует количеству ферментов, пре­вращающему один микромоль субстрата в 1 минуту в стандарт­ных условиях.

У бактерий различают эндоферменты и экзоферменты.

Эндоферменты находятся внутри бактериальной клетки, катализиру­ют внутриклеточные процессы обмена веществ. Экзоферменты выделяются во вне­шнюю среду и выполняют функцию расщепления сложных питательных веществ.

Ферменты агрессии. У патогенных бактерий имеется особая группа экзоферментов, которые называются ферментами агрессии. Они выполняют функции облегчения проникновения и распространения бактерий в тканях организма хозяина и ослабления его защитных свойств.

К ферментам агрессии относятся: гиалуронидаза, нейраминидаза, коллагеназа, протеазы, фибринолизин, гемолизин, лейкоцидин.

Конститутивные и индуцибельные ферменты. Ферменты, которые синтезируются клеткой с постоянной скоростью, независимо от наличия субстрата в среде называются конститутивными. Индуцибельные (адаптивные) ферменты образуются только в присутствии соответствующего субстрата в сре­де.

Например, фермент бета-галактозидазаначинает синтезироваться только при добавлении в питательную среду углевода лактозы, которую этот фермент расщепляет с образованием глюкозы и галактозы.

Методы определения ферментативной активности микробов

Обязательным условием идентификации выделенной чистой культуры бактерий является определение ферментативной активности в отношении углеводов и белков (биохимический «паспорт» вида).

Для выявления ферментов, расщепляющих углеводы (сахаролитические ферменты) используют дифференциально-диагностические среды Гисса.

В состав сред Гисса входит пептонная вода, индикатор рН, поплавок для улавливания газа и один из углеводов (глюкоза, лактоза, мальтоза, маннит, сахароза, крахмал и т.д.).

Если бактерии расщепляют углевод, то образуется кислота и при этом меняется цвет среды за счет находящегося в ней индикатора рН.

Большинство патогенных бактерий расщепляют углеводы с образованием только кислоты; некоторые виды ферментируют углеводы с образование кислоты и газа (СО2).

При этом меняется цвет среды и в поплавке появляется пузырек газа.

Протеолитическая активность бактерий. Показателями глубокого расщепления белка является образование индола, аммиака, сероводорода. Для выявления этих газообразных веществ делают посевы чистой культуры бактерий на мясо-пептонный бульон или пептонную воду в пробирки со специальными бумажными индикаторами.

При наличии продуктов расщепления меняется цвет соответствующего индикатора.

Протеолитическую активность бактерий определяют также путем посева чистой культуры уколом в столбик желатина по наличию и характеру разжижения среды, например, в виде перевернутой елочки, гвоздя, воронки и т.д.

Энергетический метаболизм

Это совокупность биохимических реакций, результатом которых является образование (накопление энергии) и расщепление (расход энергии) макроэргических связей в молекулах АТФ.

У бактерий АТФ может синтезироваться в результате процессов брожения и дыхания.

Брожение. Более древний, низкоэффективный способ получения энергии, при котором в результате расщепления молекулы глюкозы образуется 2 молекулы АТФ. Конечными продуктами брожения являются СО2, вода, спирты и органические кислоты.

Процесс происходит без участия кислорода.

Дыханием называют процесс окислительного фосфорилирования углеводов с образованием молекул АТФ, СО2 и воды.

При распаде одной молекулы глюкозы высвобождаются 12 электронов, которые проходят через цепь дыхательных ферментов, отдавая энергию для синтеза 36 молекул АТФ.

Освобождение дыхательной цепи от электронов осуществляют вещества, называемые акцепторами электронов.

К таким веществам относится кислород, сульфаты, нитраты, карбонаты. Если конечным акцептором электронов служит мо­лекулярный кислород, дыхание называют аэробным. В случае конечной акцепции электронов другими соединениями дыхание называют анаэробным.

По типу дыхания бактерии классифицируют на че­тыре основные группы:

1. Облигатные (строгие) аэробырастут при свободном доступе кислорода (возбудитель ту­беркулеза).

Микроаэрофилы растут при низкой (до 1%) концентрации кислорода и повышенной концентрации углекислого газа (гемофильная палочка).

Факультативные анаэробы могут расти как в присутствии кислорода, так и в анаэробных условиях (кишечная палочка).

4. Облигатные (строгие) анаэробы могут расти только при пол­ном отсутствии кислорода в окружающей среде (возбудители столбняка, ботулизма, газовой гангрены).

Источник: https://ekoshka.ru/vydelenie-chistoj-kultury/

Способы получения чистых культур

Методы получения чистых культур, основанные на механическом

⇐ Предыдущая6789101112131415Следующая ⇒

Существует ряд методов получения чистых культур микроорганизмов. Наиболее распространенными способами получения чистых культур в производственных условиях являются методы истощающего посева, основанные на механическом разделении клеток и выращивании их потомства в виде изолированных колоний:

5.2.1 истощающий посев газоном;

5.2.2 истощающий посев штрихом по секторам;

5.2.3 истощающий посев розливкой.

5.2.1 Истощающий посев газоном

Посев производится на трех пронумерованных чашках Петри (1,2,3) с питательной средой. Посев производится простерилизованным в пламени спиртовки и охлажденным стеклянным шпателем Дригальского.

На поверхность питательной среды в чашке 1 наносят петлей или стерильной пастеровской пипеткой каплю исследуемого материала и растирают ее стерильным шпателем, двигая его сначала взад и вперед на небольшом участке, а затем круговыми движениями по всей питательной среде. При этом чашку приоткрывают левой рукой настолько, чтобы в щель мог пройти только лишь шпатель.

Вынимают шпатель из чашки 1, закрывают ее и быстро переносят шпатель в чашку 2, не прожигая его. Растирают материал по всей поверхности среды, прикасаясь к ней той же стороной шпателя, которой растирался материал в чашке 1. Чашку 2 закрывают.

Затем переносят шпатель в чашку 3 и растирают материал по поверхности среды. Закрывают чашку, шпатель прожигают или опускают в дезинфицирующий раствор. Чашки подписывают и ставят в термостат вверх дном.

Через сутки на чашке 1, где было много материала, получается сплошной рост бактерий, и отдельных колоний нет. На чашке 2 и, в особенности на чашке 3, колонии распределились изолированно.

Поэтому они легко доступны исследователю.

5.2.2 Истощающий посев штрихом по секторам

Соблюдая правила стерильности, разливают питательную среду в чашки Петри. Затем дают среде остыть, слегка подсушивают ее в термостате. Затем чашку переворачивают вверх дном и расчерчивают карандашом по стеклу на четыре сектора. Чашку переворачивают крышкой вверх.

Приоткрыв чашку Петри, на один из секторов наносят каплю микробной взвеси, распределяют петлей на небольшой площадке, затем делают посев штрихом поочередно в каждом секторе.

Сеять нужно осторожно, слегка прикасаясь петлей, чтобы не повредить среду. Посевы подписывают и термостатируют.

Через сутки в первых секторах наблюдается сплошной рост по штриху, а в последнем секторе вырастают изолированные колонии.

5.2.3 Истощающий посев розливкой

Этот метод получения чистых культур был впервые предложен Робертом Кохом и поэтому иначе называется методом пластинчатых разводок Коха или методом чашечных культур Коха.

При выделении чистой культуры бактерий методом Коха основным условием является предварительное разведение концентрации микроорганизмов в исследуемом материале с таким расчетом, чтобы при посеве его на питательной среде выросли изолированные колонии.

Этот метод употребляется в тех случаях, когда нужно произвести количественное определение микроорганизмов в определенном объеме исследуемого материала (вода, молоко, пиво, зерновая болтушка и т.д.).

Разведение исследуемого материала можно производить как непосредственно в питательной среде при посеве, так и в стерильной водопроводной воде перед посевом.

Рисунок 4 – Выделение чистых культур методом

пластинчатых разводок Коха

В первом случае берут несколько пробирок с 9 см3 МПА, расплавляют их в водяной бане, охлаждают до 50-55°С и помещают в стакан с водой, имеющий примерно такую же температуру. Стерильной пипеткой набирают 1см3 исследуемого материала, вносят в первую пробирку с МПА и перемешивают.

Получается первое разведение – 10-1 (1:10). Второй стерильной пипеткой забирают 1см3 разведения 10-1, переносят во вторую пробирку, перемешивают, получая разведения 10-2 (1:100) и т.д. Количество пробирок, взятых для опыта, зависит от степени загрязненности исследуемого материала.

Затем полученные разведения в питательной среде выливают в чашки Петри, предварительно согретые в термостате во избежание неравномерного застывания агара.

Пробирки берут по порядку, обжигают край, вливают содержимое в чашку Петри, открывая их настолько, чтобы в щель вышло лишь устье пробирки.

Опорожненные пробирки опускают в дезинфицирующий раствор. Покачивая чашки, распределяют МПА равномерно по всей поверхности дна.

Во втором случае проводят аналогичное разведение исследуемого материала, но в стерильной водопроводной воде, получая разведение 10-1, 10-2, 10-3 и т.д.

Затем забирают отдельными стерильными пипетками из каждой пробирки по 0,1-1 см3 соответствующего разведения, вносят в стерильные чашки Петри, осторожно приподнимая их крышки, и заливают примерно 10 см3 расплавленного, но охлажденного до 45°С МПА.

Легким покачиванием чашки среду равномерно распределяют по дну и дают ей застыть. Затем чашки переворачивают вверх дном, подписывают и ставят в термостат для выращивания микроорганизмов.

⇐ Предыдущая6789101112131415Следующая ⇒

Дата добавления: 2016-11-18; просмотров: 1015 | Нарушение авторских прав

Рекомендуемый контект:

Похожая информация:

Поиск на сайте:

Источник: https://lektsii.org/10-49181.html

Выделение чистых культур микроорганизмов

Методы получения чистых культур, основанные на механическом

Чистая культура микроорганизма-это популяция клеток одного вида,вы­росшая на стерильной питательнойсреде. Чистую культуру выделяют путемполу­чения потомства одной родительскойклетки. Культура может расти в видеотдель­ных колоний на плотнойпитательной среде.

Методы выделения чистых культур аэробных микроорганизмов

Все методы выделения чистых культур измикробных смесей можно разделить на 2группы:

  1. Методы, основанные на принципе механического разделения микроорганизмов;

  2. Методы, основанные на биологических свойствах микроорганизмов.

Методы, основанные на принципах механического разделения микроорганизмов

Рассев шпателем по Дригальскому

Берут 3 чашки Петри с питательной средой.На первую чашку петлей или пи­петкойнаносят каплю исследуемого материалаи растирают шпателем по всей по­верхностиагара.

Затем шпатель переносят во вторуючашку и втирают оставшуюся на шпателекультуру в поверхность питательнойсреды. Далее шпатель переносят в третьючашку Петри и аналогичным образомпроизводят посев.

На первой чашкевырастает максимальное количествоколоний (сплошной pocт) натретьей – мини­мальное в виде отдельнорасположенных колоний.

Метод истощающего штриха

В целях экономии сред и посуды можнопользоваться одной чашкой, разделив еёна 4 сектора и последовательно засеявштрихом.

Для этого материал берут пет­лёйи проводят ею на расстоянии 5 мм друг отдруга ряд параллельных штрихов сна­чалапо поверхности первого сектора, а затемпоследовательно оставшимися на пет­леклетками засевают все другие секторы.При каждом последующем штрихе про­исходитуменьшение количества засеваемыхклеток.

После рассева чашки перевора­чиваютвверх дном, чтобы конденсационная вода,образовавшаяся на крышке чашки Петри,не мешала получить изолированныеколонии. Чашки выдерживают в термостате1-7 суток, так как скорость роста различныхмикроорга­низмов неодинакова.

Таким образом, в первых секторахполучается сплошной рост, а вдольпосле­дующих штрихов вырастаютобособленные колонии, представляющиесобой потом­ство одной клетки.

Метод прогревания

Позволяет отделить спорообразующиебациллы от неспоровых форм. Прогре­ваютисследуемый материал на водяной банепри 80°С 10-15 минут. При этом поги­баютвегетативные формы, а споры сохраняютсяи при посеве на соответствующуюпитательную среду прорастают, образуяколонии только спорообразующих бакте­рий.

Метод обогащения

Исследуемый материал засевают наэлективные питательные среды,способст­вующие росту определенноговида микроорганизмов.

Метод заражения лабораторных животных

Этот метод используется для выделениячистой культуры из патологическогоматериала, загрязненного постороннеймикрофлорой, или в том случае, когда висследуемом материале очень малопатогенных микроорганизмов.

Для за­ражения подбирают наиболеевосприимчивые к предполагаемомувозбудителю ин­фекции виды животных. Например, для выделения пневмококкаиз мокроты зара­жают белую мышь. Этоживотное весьма чувствительно к данномумикробу и резистентно к другим микробам,находящихся в мокроте.

В связи с этимпневмококк быстро размножается ворганизме мыши, а другие микробы погибают.Через 18-20 часов после заражения мышьзабивают и кровь, взятую из сердца,засевают на питательную среду.

Так какв крови содержится один пневмококк, тона питатель­ной среде вырастает чистаякультура.

Методы, основанные на биологическихсвойствах микроорганизмов

Биологические методы выделения чистыхкультур основаны на учете того или иногосвойства выделяемого микроба, отличающегоего от других, находящихся с ним в смеси.

Метод Шукевича

Применяется для выделения подвижныхмикроорганизмов. Исследуемый ма­териалзасевают в конденсационную водускошенного агара, находящегося впро­бирке.

При размножении подвижныеформы микробов из конденсационной водыраспространяются по агару, как бы”вползают” на его поверхность. Изверхней час­ти роста производят высевв конденсационную воду свежей питательнойсреды.

Производя таким образом несколькопересевов, в конце концов получаютчистую культуру подвижной бактерии.

Метод ингибирования

Основан на различном действии некоторыххимических веществ и антибиоти­ковна микроорганизмы. Определённые веществаугнетают рост одних микроорга­низмови не оказывают влияния на другие.Например, небольшие концентрациипенициллина задерживают ростграмположительных микроорганизмов ине влияют на грамотрицательные.

Первый этап выделения чистой культуры

  1. Из исследуемого материала готовят мазок, окрашивают по Граму и микроскопируют.

  2. Производят посев на чашки Петри с питательным агаром. Для этого исследуемый материал, в случае необходимости, разводят стерильным физиологическим раствором.

    Одну каплю приготовленного разведения наносят петлей на поверхность питательной среды в чашке Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности.

    После посева чашку переворачивают дном кверху, подписывают и помещяют в термостат при 37ºС на 18-24 ч.

  3. Производят посев на элективную питательную среду.

  4. Производят посев на дифференциально-диагностическую среду.

  5. Заражают лабораторных животных исследуемым материалом.

Источник: https://studfile.net/preview/5599759/page:23/

Методы выделения чистых культур микроорганизмов

Методы получения чистых культур, основанные на механическом

Культивирование микроорганизмов, помимо состава питательной сре­ды, зависит от физических и химических факторов (температура, кислотность, аэрация, свет и т. д.).

При этом количественные показатели каждого из них неодинаковы и определяются особенностями метаболиз­ма каждой группы бактерий.

Существуют методы культивирования мик­роорганизмов на твердых и в жидких питательных средах в аэробных, анаэробных и других условиях.

Методы выделения чистых культур аэробных микроорганизмов. Для того, чтобы получить изолированные колонии, при нанесении материал распределяют так, чтобы клетки бактерий были удалены друг от друга. Для получения чистой культуры используют две основные группы методов:

а) мето­ды, основанные на принципе механического разделения микроорганизмов;

б) методы, основанные на биологиче­ских свойствах микроорганизмов.

Методы, основанные на принципе механического разде­ления микроорганизмов

Рассев шпателем по Дригальскому. Берут 3 чашки Петри с питательной средой. На 1-ю чашку петлей или пипеткой наносят кап­лю исследуемого материала и растирают шпателем по всей поверхности питательного агара. Затем шпатель пе­реносят во 2-ю чашку и втирают оставшуюся на шпателе культуру в поверхность питательной среды.

Далее шпа­тель переносят в 3-ю чашку и аналогичным образом про­изводят посев. На 1-й чашке вырастает максимальное количество колоний, на 3-й — минимальное. В зависимо­сти от содержания микробных клеток в исследуемом ма­териале на одной из чашек вырастают отдельные коло­нии, пригодные для выделения чистой культуры микро­организма.

Метод Пастера (метод разведений). Из исследуемого материала готовят ряд последовательных, чаще десятикратных серийных разведений в жидкой стерильной среде или физиологическом растворе в пробирках. Далее высевают материал газоном по 0,5 мл из каждой пробирки.

Предполагают, что в какой-то из пробирок останется количество микроорганизмов, поддающихся подсчету при высеве на пластинчатые среды. Этот метод дает возможность подсчитать микробное число в исследуемом материале.

(Микробное число – количество колоний на последней чашке с ростом микроорганизмов, умноженное на степень разведения материала).

Рассев петлей (посев штрихами). Берут одну чашку Петри с питательным агаром и делят ее на 4 сектора, проводя разграничительные линии на внешней стороне дна чашки. Исследуемый ма­териал петлей вносят в первый сектор и проводят ею па­раллельные линии по всему сектору на расстоянии одна от другой около 5 мм.

Этой же петлей, не изменяя ее положения по отношению к агару, проводят такие же линии на других секторах чашки. В том месте, где на агар попало большое количество микробных клеток, рост микроорганизмов будет в виде сплошного штриха. На секторах с небольшим количеством клеток вырастают отдельные колонии.

Кроме того, можно наливать разведен­ные растворы смешанной культуры на поверхность твер­дых сред в чашках.

Метод фильтрации. Основан на пропускании исследуемого материала через специальные фильтры с определенным диаметром пор и разделении содержа­щихся микроорганизмов по величине. Этот метод при­меняется главным образом для очистки вирусов от бак­терий, а также при получении фагов и токсинов (в фильтрате – чистый фаг, очищенный токсин).

Методы, основанные на биологических свойствах мик­роорганизмов

Создание оптимальных условий для размножения

· Создание оптимального температурного режима для избирательного подавления размножения сопутствующей микрофлоры при низкой температуре и получения культур психрофильных или термофильных бактерий.

Большинство микробов неплохо развиваются при 35-37°С, иерсинии хорошо растут при 22°С, лептоспиры культивируют при 30°С.

Термофильные бактерии растут при температурах, лежащих за пределами температурных режимов прочих сопутствующих видов бактерий (так, кампилобактер культивируют при 42°С).

· Создание условий для аэробиоза или анаэробиоза. Большинство микроорганизмов хорошо растут в присутствии атмосферного кислорода.

Облигатные анаэробы растут в условиях, исключающих присутствие атмосферного кислорода (возбудители столбняка, ботулизма, бифидумбактерии, бактероиды и др.).

Микроаэрофильные микроорганизмы растут только при низком содержании кислорода и повышенном содержании СО2 (кампилобактер, геликобактер).

· Метод обогащения. Исследуемый материал за­севают на элективные питательные среды, способствую­щие росту определенного вида микроорганизмов.



Источник: https://infopedia.su/15xfbca.html

23. Чистые культуры микроорганизмов. Методы получения и назначение

Методы получения чистых культур, основанные на механическом

В условиях естественного обитания чистые культуры микроорганизмов встречаются довольно редко. Тем не менее, основная часть современных представлений о свойствах бактерий, а также их взаимоотношениях получена при изучении чистых культур. Поэтому совершенно необходимой задачей является выделение чистых культур различных видов бактерий, существующих в естественных условиях.

Для выделения чистых культур большинства бактерий обычно затрачивается не более 2–3 суток, однако для некоторых (например, бактерии туберкулеза), этот процесс может затягиваться до 4–6 недель. Чистой культурой микроорганизмовназывают популяцию бактерий одного вида, представляющую потомство одной клетки.

Выделение чистой культуры предполагает проведение трех этапов:

  1. получение накопительной культуры;
  2. выделение чистой культуры;
  3. определение чистоты выделенной культуры.

Методы получения накопительной культуры

В основе выделения и определения численности представителей отдельных групп микроорганизмов лежит получение накопительных культур с помощью создания элективных условий. Накопительными называют такие культуры, в которых преобладают представители одной группы или даже одного вида микроорганизмов.

Элективными называют условия, обеспечивающие преимущественное развитие определенной группы или вида микроорганизмов. При создании элективных условий учитывают особенности физиологии и метаболизма микроорганизмов: требования их к источникам питания, отношение к кислотности среды, аэрации, температуре, способность к образованию эндоспор и т.д.

Особенно часто элективные условия создают путем подбора соответствующей питательной среды.

Источником для получения бактериальных культур, родовую и видовую принадлежность которых необходимо определить, могут служить почва, воздух, вода, пищевые продукты, надземные и подземные части растений, а также различные тканевые жидкости животных и человека, отделяемое ран, слизистой оболочки и т.д.

Методы накопления имеют целью добиться увеличения относительного количества данного микроорганизма за счет создания благоприятных условий для его роста и выживания по сравнению с другими или путем пространственного отделения его из популяции.

К физическим методам, которые могут быть использованы при получении накопительной культуры, следует отнести:

  • регуляцию роста температурой,
  • тепловую и ультразвуковую обработку,
  • ультрафиолетовое облучение и др.

Можно использовать также и особенности некоторых других физических свойств данного микроорганизма, например, его размеры, подвижность, что позволяет отделять данный микроорганизм от других членов популяции. В качестве примеров можно привести следующие:

  • Использование освещения для получения культур цианобактерий.Такие виды легко выделяются из пресной воды и морских осадков. Для получения накопительных культур, образцы инкубируют при 25 °С и постоянном освещении от 500 до 3000 лк. Через 4–7 дней наблюдается увеличение мутности культуры, имеющей часто розовую, коричневую, желтую окраску.
  • Инкубация при низкой температуре для получения культур психрофильных бактерий.Низкая температура способствует задержке роста многих бактерий. На первом этапе проводят инкубирование при температурах 0–5 °С в течение 14–24 дней.

При использовании химических методов применяют токсические вещества, которые убивают или подавляют рост оставшейся части популяции, не влияя на выделяемый микроорганизм. Кроме того, эти вещества могут быть источниками питания, используемыми преимущественно отдельными бактериями в смешанной популяции.

Примерами использования химических методов для выделения микроорганизмов являются следующие:

  • Условия инкубирования в кислой среде для выделения культур лактобацилл.Для выделения бактерий из сыров, высев производится на среду, которая за счет ацетатной буферной системы имеет рН, равный 5,3. В этом случае Lactobacillus casei, Lactobacillus plantarum способны образовывать колонии, а другие молочнокислые бактерии – нет.
  • Ингибирование роста пенициллином для получения культур микоплазм.Поскольку микоплазмы лишены клеточной стенки, они устойчивы к высоким концентрациям пенициллина, который подавляет рост многих бактерий с клеточной стенкой. Антибиотик, добавленный к питательной среде в концентрации 100–200 Е/мл, позволяет избавиться от посторонней чувствительной к нему микрофлоры.
  • Целлюлоза как субстрат для цитофагДля получения накопительных культур цитофаг, разлагающих целлюлозу, на поверхность основного минерального агара помещают кусочки фильтровальной бумаги. На бумагу кладут частицы почвы или растительного материала и инкубируют чашки при комнатной температуре. Следят за образованием вокруг частиц желтой, оранжевой или розовой окраски, а также за процессом лизиса бумаги.

Биологические методы включают использование специфических хозяев выделяемого микроорганизма, а также преимуществ некоторых свойств патогенных микроорганизмов. К ним относятся такие методы как:

  • Получение накопительной культуры бактерий, патогенных для животных организмов.Патогенные для животных бактерии можно выделить, заражая восприимчивое животное-хозяин смешанной культурой исследуемого материала, в котором предполагается его присутствие. В инфицированном животном патогенный микроорганизм часто преобладает и обнаруживается в крови и тканях в виде чистой культуры. При этом в результате действия защитных механизмов животного рост непатогенных сопутствующих микроорганизмов ингибируется, и они гибнут. Например, чистую культуру пневмококков можно получить через 4–6 часов после внутрибрюшинного введения мыши 1 мл эмульгированной мокроты, содержащей Streptococcus pneumoniaе. Пробы перитонеальной жидкости берут из брюшинной полости животного с помощью стерильной остроконечной капиллярной пипетки.
  • Симбиоз растений с Rhizobium. Клубеньки, образуемые на корнях бобовых растений, представляют собой природную накопительную культуру симбиотических азотфиксирующих бактерий. Корни бобовых растений, содержащие клубеньки, промывают и отделяют часть корня с клубеньками. После поверхностной стерилизации корень помещают в воду, раздавливают пинцетом в одной чашке Петри, 1–2 петли такой суспензии переносят в следующую чашку и т. д. К каждому разведению добавляют расплавленный и остуженный агар с маннитом. После застывания агара чашки инкубируют при оптимальной температуре.

Во многих случаях для получения накопительной культуры определенных бактерий используют сочетание физических, химических и биологических методов.

Для выделения бактерий в виде чистых культур известно сравнительно мало методов. Чаще всего это делают путем изолирования отдельных клеток на твердой питательной среде, используя метод посева штрихом или разлива по чашкам небольшого количества жидкой культуры (метод предельных разведений).

Однако получение отдельной колонии не всегда гарантирует чистоту культуры, поскольку колонии могут вырасти не только из отдельных клеток, но и из их скоплений. Если микроорганизмы образуют слизь, то часто к ней прикрепляются посторонние формы.

Для очистки предпочтительно использовать неселективную среду (МПА), поскольку на ней лучше растут контаминирующие микроорганизмы и их легче обнаружить.

Получение изолированных колоний на твердой питательной среде достигается либо путем рассева взвеси микроорганизмов шпателем (метод Коха), либо с помощью бактериологической петли (метод истощающего штриха). В результате механического разобщения клеток микроорганизмов каждая из них может дать начало изолированной колонии одного вида микробов.

Рассев шпателем (метод Коха) производят в следующей последовательности:

  • на поверхность питательной среды в чашке № 1 наносят стерильной пипеткой каплю накопительной культуры и распределяют ее стерильным шпателем;
  • шпатель достают, чашку быстро закрывают и переносят шпатель в чашку № 2, не стерилизуя его. Имитируют распределение культуры по всей поверхности среды, прикасаясь к ее поверхности той же стороной шпателя, которой ранее распределяли пробу;
  • точно те же действия проводят и в чашке № 3, после чего шпатель стерилизуют;
  • засеянные чашки помещают в термостат и инкубируют при оптимальной температуре.

Через определенное время чашки достают из термостата и изучают рост микроорганизмов. Обычно в чашке № 1 наблюдают сплошной рост бактерий, в последующих чашках отмечают колонии.

Рассев петлей (метод истощающего штриха) предполагает высев бактериологической петлей из накопительной культуры на поверхность агаризованной среды в чашках Петри. На первом этапе петлей с культурой наносят ряд параллельных штрихов на агаризованной среде.

Петлю стерилизуют, остужают о незасеянную часть агаризованной среды и проводят серию штрихов в направлении, перпендикулярном первым. Затем петлю вновь стерилизуют, остужают и штрихи наносят в направлении В, а после очередной стерилизации – в направлении Г. Чашки помещают в термостат и через определенное время учитывают результаты.

Обычно на штрихах А и Б вырастает большое число колоний (иногда сплошной рост), тогда как на штрихах В и Г формируются изолированные колонии.

Источник: https://vseobiology.ru/mikrobiologiya/1778-23-chistye-kultury-mikroorganizmov-metody-polucheniya-i-naznachenie

Техника посева, методы выделения чистых культур и культуральные свойства микроорганизмов. определение количества бактерий

Методы получения чистых культур, основанные на механическом

Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения количества бактерий.

Оборудование и материалы. Бульонные и агаровые культуры В. cereus, Е. coli и S. aureus в пробирках и в чашках Петри, сме­шанная бульонная культура Е. соli и S. aureus, стерильные МПА и МПБ в пробирках, чашках Петри, солевой МПА (8 % хлорида натрия) в чашках Петри, стеклянные шпатели, стерильные пи­петки Пастера, бактериологические петли.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Культура микроорганизмов — это популяция (расплодка) кле­ток на питательной среде. Посев и пересев культур микроорга­низмов на питательные среды — наиболее частый методический прием, который используют для первичного выделения микро­организма из какого-либо объекта, а также для поддержания культур в жизнеспособном состоянии в лабораторных условиях.

Чистая культура — это популяция бактерий одного вида или биологического варианта (биовара), выращенная на питательной среде.

Штаммы — чистые культуры микроорганизмов одного вида, выделенные из разных объектов или из одного и того же объекта, но в разное время.

Колония — макроскопически видимое скопление клеток мик­роорганизма на поверхности или внутри плотной питательной среды, образовавшихся в результате размножения одной жизне­способной клетки. По этой причине колонию обычно рассматри­вают как чистую культуру микроорганизма.

Техника посева микроорганизмов. Посевы из нативного мате­риала чаще проводят пастеровской пипеткой, из культур микро­организмов—бактериологической петлей в зоне стерильного воздуха над пламенем горелки. На культуральных сосудах (про­бирки, чашки Петри, колбы и т.д.) пишут номер экспертизы, под которым зарегистрирован материал, дату посева.

Посев на жидкую питательную среду. Пробирку с исследуемым материалом и пробирку с питательной средой держат в левой руке, в правую руку берут бактериологическую петлю или пипет­ку и'пробки от пробирок (рис. 37).

Над пламенем горелки обжи­гают края пробирок, бактериологическую петлю (пипетку) вводят в пробирку с материалом, переносят материал в пробирку со сте­рильной питательной средой и стряхивают с петли в среду, не смачивая при этом петледержатель.

Края пробирок вновь прово­дят над пламенем горелки, закрывают пробирки пробками, сте­рилизуют петлю и ставят ее в штатив. Использованную пипетку опускают концом вниз в банку с дезинфицирующим раствором.

Посев на плотную питательную среду. Выполняют разными способами.

При посеве в пробирку: 1) пробирки с засеваемой мик­робной культурой и питательной средой (МПА) берут в левую руку, пробирку с МПА держат скошенной поверхностью среды вверх.

В открытую у пламени пробирку с микробной культурой (или другим материалом) вводят простерилизованную бактерио­логическую петлю, слегка прикасаясь петлей к поверхности сре­ды (материала), берут материал, переносят его в пробирку со сте­рильной питательной средой.

Петлю опускают до дна пробирки, погружают в конденсационную жидкость и зигзагообразным движением проводят снизу вверх по поверхности среды (посев «штрихом») (рис. 38). Пробирки закрывают пробками, петлю прожигают.

Пробирки с посевами ставят в термостат; 2) при по­севе уколом в столбик среды пробирку с плотной (нескошенной) средой берут в левую руку, над пламенем горелки извлекают из пробирки пробку, петлей с материалом прокалывают вертикаль­но по центру пробирки питательную среду, петлю вынимают, прожигают, пробирку с засеянной средой закрывают пробкой (рис. 39).

При посеве на чашку Петри: чашку берут в левую руку, большим пальцем левой руки слегка приподнимают крышку, об­жигают на пламени горелки края чашки в зоне щели, вносят по­севной материал на поверхность питательной среды, затем рас­тирают его при помощи стеклянного шпателя или бактериологи­ческой петли (рис. 40).

Посев на полужидкую питательную среду. Выполняют методом укола в столбик питательной среды.

Выделение чистых культур микроорганизмов. При бактериоло­гическом исследовании искомый микроорганизм обнаруживают в материале, как правило, в смеси с бактериями других видов. Классическими методами бактериологии возможно идентифици­ровать микроорганизм только при условии, что он находится в виде чистой культуры.

Методы, основанные на механическом разобщении клеток. Эти методы наиболее часто применяют при выделении чистых куль­тур микроорганизмов.

Метод Пастера (метод разведений): из исследуемого материала готовят ряд последовательных, чаще десятикратных разведений на стерильной жидкой питательной среде в пробир­ках или колбах (10-1…10-10).

Предполагают, что количество мик­робных клеток в каждом последующем разведении будет меньше, чем в предыдущем, и в какой-то из пробирок останется только одна микробная клетка, которая и даст/начало чистой культуре Микроорганизма.

Однако для успешного применения этого мето­да необходимо, чтобы искомый микроорганизм в материале ко­личественно преобладал над сопутствующими видами.

Метод Коха (метод заливок): исследуемый материал в небольшом количестве вносят в пробирку с расплавленным и ох­лажденным до 45…50 “С МПА, перемешивают, затем каплю пи­тательной среды переносят во вторую пробирку с расплавленным МПА и т. д.

Количество разведений зависит от предполагаемой численности микроорганизмов в исследуемом материале. Затем содержимое каждой пробирки выливают в стерильные чашки Петри, после затвердения среды посевы помещают в термостат.

Фиксированные в плотной среде микробные клетки при размно­жении формируют колонии, из которых можно отвить (пересе­ять) чистую культуру микроорганизма.

Метод Дригальского: берут три—пять чашек Петри с плотной питательной средой. В одну из чашек вносят посевной материал и распределяют его шпателем по поверхности пита­тельной среды.

Не обжигая шпатель, оставшийся на нем матери­ал последовательно растирают на поверхности среды во второй, третьей и остальных чашках.

В последних чашках Петри после инкубирования в термостате обычно наблюдают формирование изолированных колоний бактерий.

Более экономичен следующий способ получения изолированных колоний. Бактериологичес­кой петлей с посевным матери­алом несколько раз делают па­раллельные штрихи в одном секторе чашки Петри с пита­тельным агаром (рис. 41).

Пет- о лю прожигают в пламени горел­ки, дают остыть и часть матери­ала из первого сектора {А) ана­логичным образом распре­деляют во втором секторе (В), затем в третьем (С) и четвертом (Д) секторах.

Даже при рассеве бактериальной массы из коло­ний в секторе Д при таком спо­собе получают рост изолирован­ных колоний.

Методы, основанные на био­логических особенностях микроорганизмов.Направлены на подав­ление роста сопутствующей микрофлоры.

Прогревание: при выделении чистой культуры споро-образующего вида бактерий исследуемый материал прогревают при 80 °С 20 мин или кратковременно кипятят. Вегетативные клетки сопутствующей микрофлоры в этих условиях погибают, а споры искомого микроорганизма сохраняют жизнеспособность и прорастают после посева на питательные среды.

Использование селективных питатель­ных сред, которые содержат вещества, подавляющие рост сопутствующей микрофлоры (антибиотики, красители и т. д.), — частый прием при исследовании контаминированного материа­ла.

Однако необходимо учитывать, что селективные факторы ча­сто находятся не в бактерицидных, а в бактериостатических кон­центрациях, поэтому клетки сопутствующих микроорганизмов не растут, но остаются жизнеспособными на поверхности пита­тельной среды и при отвивке колоний исследуемой культуры на обычные среды могут быть причиной получения смешанной культуры.

Биопроба — заражение чувствительных лабораторных животных — метод, с помощью которого не только выделяют возбудитель из патологического материала, но также изучают вирулентность чистой культуры.

Организм животного с его за­щитными факторами служит биологическим «фильтром», кото­рый уничтожает сопутствующую непатогенную микрофлору, но не способен подавить размножение вирулентных бактерий, что позволяет достаточно легко выделить возбудитель в чистой культуре из тканей погибшего или убитого с диагностической целью животного.

При выделении чистых культур некоторых видов бактерий ис­пользуют их другие биологические особенности. Например, спо­собность микроорганизма расти при низких (листерии) или высо­ких (термофильные бактерии) температурах, которые лежат за пределами температурных диапазонов сопутствующих видов бак­терий. Для выделения культуры P.

vulgaris используют способность данного вида давать ползучий рост (роение) на поверхности плот­ной питательной среды. С этой целью материал, содержащий P. vulgaris, засевают в конденсационную воду на дне пробирки со скошенным МПА, не касаясь поверхности среды.

Сопутствующая микрофлора растет в нижней части питательной среды, а протей в виде прозрачной пленки распространяется вверХ.

Для выделения С. tetani материал засевают точечно на плот­ную питательную среду в чашках Петри и после выращивания отвивают культуру с периферии ползучего роста.

Культуральные свойства микроорганизмов. В процессе иденти­фикации наряду с другими свойствами у микроорганизмов изу­чают культуральные признаки — особенности роста на плотных, жидких и полужидких питательных средах при определенных ус­ловиях.

На плотных средах изучают колонии микроорганизмов. Бакте­рии каждого вида формируют колонии с определенными призна­ками, которые обычно учитывают при идентификации. Раз­мер колоний: крупные — диаметром 4…6 мм и более, сред­ние—2…4 мм, мелкие — 1…2мм и точечные колонии диаметром менее 1 мм.

Форма колоний может быть правильной круг­лой, неправильной (амебовидной, розеткообразной), корневид­ной (рис. 42). Цвет зависит от способности микроорганизма образовывать пигмент: белый, желтый, красный, сине-зеленый и т. д. Бактерии, не синтезирующие пигмент, формируют бесцвет­ные колонии.

Учитывают характер поверхности, ко­торая может быть шероховатой, блестящей, матовой, сухой, влажной, гладкой, радиально или концентрически исчерченной. Края колонии могут быть ровными, волнистыми, зазубренны­ми, бахромчатыми, их исследуют невооруженным глазом и под малым увеличением микроскопа (рис. 43).

Рельеф (про­филь) определяют, рассматривая колонию сбоку; различают плоские, конусообразные, куполообразные, плоские с конусо­видным центром или углублением в центре колонии, с утолщен­ными (валикообразными) краями (рис. 44). Учитывают про­зрачность колонии: непрозрачная, полупрозрачная, про­зрачная.

Структура может быть однородной, зернистой, волокнистой и т.д. (рис. 45). Ее выявляют при слабом увеличе­нии микроскопа. Консистенция может быть пастообраз­ной, слизистой, плотной (сухой) и т.д.; ее определяют, дотраги­ваясь до колонии бактериологической петлей.

Колонии некото­рых видов врастают в толщу питательной среды, что также определяют при помощи бактериологической петли. Запах: многие виды бактерий в процессе роста на питательных средах выделяют специфические ароматические вещества.

Ценную дополнительную информацию об особенностях стро­ения колоний дает их изучение в косопадающем пучке света (рис. 46). Культуры на прозрачной агаровой среде в чашках Пет­ри помещают на предметный столик бинокулярной лупы.

Между бинокулярной лупой и источником света помещают зеркало от микроскопа вогнутой стороной вверх таким образом, чтобы лучи, отраженные от него, попадали в плоскость изучаемого объекта под углом 40…45°. Зеркало устанавливают на равном уда
лении от объекта и источника света (12…14 см).

При таком осве­щении колонии бактерий могут быть окрашены в различные цве­та. Цвет зависит как от видовых особенностей, так и от состоя­ния культуры (S-, R-формы, см. тему 12).

В жидких средах учитывают следующие признаки: степень помутнения среды (интенсивное, среднее, слабое), на­личие или отсутствие пристеночного кольца на гра­нице мениска и внутренней поверхности пробирки, харак­тер поверхностной пленки (толщина, цвет, поверхность), характер осадка (обильный, скудный, ком­пактный, хлопьевидный, слизистый).

При характеристике осадка пробирку слегка встряхивают и учитывают результат: осадок раз­бивается в гомогенную равномерную суспензию; образуются мелкие или крупные хлопья, глыбки; слизистый осадок при встряхивании обычно поднимается в виде косички. Пигментообразующие микроорганизмы вызывают окрашивание питательной среды и осадка (желтое, зеленоватое, красное и т.

д.).

Определение количества бактерий. При характеристике разви­тия микробной популяции, санитарной оценке кормов, продук­тов питания, при вычислении показателя вирулентности микро­организма необходимо устанавливать количество микробных клеток в единице объема того или иного материала.

Определение общего количества микроорганизмов. Можно при­менять метод прямого счета и метод измерения светорассеяния.

Метод прямого счета: бактерии подсчитывают в камерах Горяева, Тома или в окрашенных мазках. В последнем случае 0,01 мл бактериальной суспензии микропипеткой нано­сят на предметное стекло и равномерно распределяют на 1 см2. Мазок фиксируют, окрашивают и подсчитывают клетки в 10…

15 полях зрения по диагонали квадрата. Определяют сред­нее число клеток в одном поле зрения. Делят 1 см2 на площадь поля зрения, которую измеряют методом микрометрии (см.

тему 1), затем частное умножают на среднее число микробных клеток в поле зрения, получают их количество в 0,01 мл взвеси бактерий.

Метод измерения светорассеяния считают более точным. Количество света, рассеиваемого суспензией бак­терий, пропорционально их концентрации.

Этот показатель дос­таточно точно можно измерить при помощи фотоэлектроколориметра. Зависимость между оптической плотностью и концентра­цией клеток различна для бактерий разных видов.

Поэтому при работе с таким прибором для каждого вида бактерий необходимо строить свою калибровочную кривую зависимости.

На практике широко используют простой субъективный ме­тод, основанный на визуальном сравнении мутности исследуе­мой бактериальной суспензии с так называемым «стандартом мутности», выпускаемым Государственным научно-исследова­тельским институтом стандартизации и контроля биологических препаратов им. Л. А. Тарасевича.

Стандарт представляет собой взвешенные в воде частицы стекла «Пирекс» и состоит из трех запаянных пробирок-эталонов (5, 10 и 20 международных еди­ниц). Мутность стандарта на 10 ед.

соответствует следующим кон­центрациям: для бактерий кишечной группы — 0,93*109 кл/мл; коклюшной группы — 11 • 109 кл/мл; для бруцеллезных бакте­рий — 1,7 • 109 кл/мл; туляремийных микробов — 5 • 109 кл/мл.

Мерной пипеткой вносят 0,1…0,5 мл исследуемой бактериаль­ной суспензии в пустую пробирку, соответствующую по диамет­ру и толщине стенок пробирке «стандарта мутности». К суспен­зии добавляют физиологический раствор до оптической плотнос­ти стандарта на 10 ед.

Физиологический раствор вносят неболь­шими мерными порциями, записывая его количество и сравнивая мутность опытной и стандартной пробирок невоору­женным глазом на фоне специальной шрифтовой таблицы.

Зная, во сколько раз развели исследуемую бактериальную суспензию, чтобы уравнять ее оптическую плотность со стандартом, можно рассчитать содержание микробных клеток в 1 мл исходной сус­пензии.

Например, в пробирку поместили 0,1 мл суспензии бактерий, содержащей неизвестное количество клеток. Для уравнивания оптической плотности исследуемой суспензии со стандартом мутности 10 ед.

в пробирку добавили 0,9 мл физиологического раствора, т. е. исходную суспензию развели в 10 раз. Известно, что суспензия данного вида бактерий при оптической плотности 10 ед. содержит 1,3*109 кл/мл.

Следовательно, концентрация ис­следуемой суспензии составляет 1,3*1010 кл/мл.

При работе с бактериями, для которых нет данных о содержа­нии микробных клеток в 1 мл относительно «стандарта мутнос­ти», необходимо предварительно методом прямого счета опреде­лить их количество в суспензии, например, оптической плотнос­тью 10 ед.

Определение количества живых микроорганизмов. Метод осно­ван на выводе, что бактериальная колония — это результат деле­ния единичной клетки на плотной питательной среде (исключе­ние составляют бактерии, образующие цепочки из клеток).

Мерной пипеткой объемом 1 мл добавляют 1 мл культуры Е. coli в бактериологическую пробирку с 9 мл стерильного физио­логического раствора, подогретого до 37…38 °С (разведение 10-1). Далее аналогичным способом готовят разведения культуры от 10-2 до 10-8.

Для каждого разведения используют новую пипетку того же объема и класса. Из пяти последних пробирок суспензию бактерий по 0,1 мл наносят на поверхность подсушенного МПА в две чашки Петри. Внесенный материал стерильным шпателем распределяют по поверхности питательной среды.

Посевы инку­бируют при 37…38 ºС 24 ч.

Учет результатов: в чашках Петри, где выросло более 150…300 и менее 10 колоний, результаты не учитывают. Выбирают чашки Петри с параллельными посевами (из одного разведения), содер­жащими 10… 150 колоний.

Подсчитывают колонии на чашках из одного разведения, суммируют, определяют среднее число коло­ний и с учетом степени разведения рассчитывают содержание жизнеспособных клеток (колониеобразующих единиц) в 1 мл исходной суспензии бактерий.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Провести пересев бульонной и агаровой культур бактерий на скошенный МПА и в МПБ в пробирках.

2. Провести посев смешанной бульонной культуры на МПА в чашках Петри по методу Дригальского.

3. Описать характер роста Е. coli, S. aureus, В. cereus на МПА (колонии) и в МПБ.

4. Определить количество микробных клеток в 1 мл бульонной культуры Е. coli методом прямого счета и при помощи стандарта мутности.

5. Провести посев бульонной культуры Е. coli на МПА в чаш­ках Петри с целью определения количества жизнеспособных клеток.

Контрольные вопросы

1.Что такое культура, смешанная культура, чистая культура, штамм и колония бактерий?

2.Какие методы применяют для получения чистых культур микроорганизмов?

3.Какие культуральные признаки учитывают при идентификации бактерий?

4.Какими методами определяют общее число микроорганизмов и количество жизнеспособных клеток?

Тема 9

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/10_145079_tehnika-poseva-metodi-videleniya-chistih-kultur-i-kulturalnie-svoystva-mikroorganizmov-opredelenie-kolichestva-bakteriy.html

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-20979.html

Medic-studio
Добавить комментарий