микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

§ 6. Устройство увеличительных приборов

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

1. Какие увеличительные приборы вы знаете?

Очки, лупа, микроскоп, подзорная труба, бинокль, телескоп

2. Для его их применяют?

Данные приборы необходимы для того, чтобы рассматривать предметы, которые сложно рассмотреть невооружённым глазом. Это могут быть либо очень мелкие объекты, либо очень далеко расположенные, например, небесные тела.

Лабораторные работы

Лабораторная работа: Устройство лупы и рассматривание с её помощью клеточного строения растений

1. Рассмотрите ручную лупу. Какие части она имеет? Каково их назначение?

Ручная лупа состоит из трёх частей: ручки, оправы и двояковыпуклого увеличительного стекла.

Ручка нужна для того, чтобы было удобно пользоваться лупой, оправа — для присоединения увеличительного стекла к ручке, а увеличительное стекло (главная составная часть лупы) — для получения увеличенного изображения рассматриваемого предмета.

2. Рассмотрите невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Что характерно для их строения?

Если внимательно рассмотреть мякоть томата, арбуза или яблока, то даже невооруженным взглядом можно заметить, что мякоть плодов состоит из мельчайших крупинок — клеток.

3. Рассмотрите кусочки мякоти плодов под лупой. Зарисуйте увиденное в тетрадь, рисунки подпишите. Какую форму имеют клетки мякоти плодов?

  • Клетки мякоти томата напоминают маленькие зёрнышки. Они имеют вытянутую угловатую форму.
  • Клетки арбуза прозрачные и шарообразные, щедро наполненные соком.
  • Клетки яблока маленькие и круглые. Они располагаются очень близко друг к другу.

Лабораторная работа: Устройство микроскопа и приёмы работы с ним

1. Изучите микроскоп. Найдите тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясните, какое значение имеет каждая часть. Определите, во сколько раз микроскоп увеличивает изображение объекта.

  • Тубус — это зрительная трубка, в которую вставлены увеличительные стёкла.
  • Окуляр — верхняя часть тубуса микроскопа, через которую смотрят на изображение в микроскопе.
  • Объектив — нижняя часть тубуса, которая при помощи дополнительных  увеличительных стёкол позволяет ещё больше увеличить рассматриваемый объект.
  • Штатив — специальное крепление, которое соединяет и удерживает все части микроскопа.
  • Предметный столик — подставка с отверстием по центру, на которую помещают стеклянную пластину с изучаемым объектом.
  • Зеркало — деталь микроскопа, предназначенная для улавливания солнечного луча и направления его на изучаемый объект.
  • Винты — это механизмы, позволяющие настроить максимально чёткое изображение в окуляре.

Световой микроскоп может увеличивать изображение предметов до 3 600 раз. Для того чтобы узнать какое увеличение позволяет получить тот или иной световой микроскоп, надо перемножить увеличительные возможности окуляра на увеличительные возможности объектива (подписано на соответствующих частях микроскопа).

2. Познакомьтесь с правилами пользования микроскопом.

Правила работы с микроскопом

  1. Для работы микроскоп ставят на 2-3 см от края стола немного левее от себя. Вся работа ведётся сидя.
  2. Перед началом работы микроскоп осматривают, очищают от пыли зеркало и окуляр мягкой салфеткой.
  3. После этого полностью открывают диафрагму микроскопа.
  4. Начинать работу всегда следует с малого увеличения.
  5. Объектив должен быть установлен в рабочее положение, то есть примерно на расстоянии 1 см от предметного стекла.
  6. При помощи зеркала устанавливается максимально эффективное освещение объекта. Для этого глядя в окуляр надо подвигать зеркало и поймав луч света направить его к объектив.
  7. Изучаемый объект (микропрепарат) кладётся на предметный столик под объектив. Затем, при помощи винтов, объектив опускается на расстояние 4-5 мм до микропрепарата. Внимание! В это время вы не должны смотреть в окуляр, а всё внимание уделить опускаемому объективу.
  8. После этого при помощи винта грубой наводки объектив устанавливается в неоходимое для рассматривания объекта положение. Внимание! Если вы глядите в окуляр, то винт грубой настройки можно вращать только на себя, то есть можно только понимать объектив. В противном случае (если глядя в микроскоп пробовать опускать объектив) можно повредить покровное стекло.
  9. Медленно передвигая микропрепарат рукой необходимо найти наиболее выгодное положение для его рассматривания.
  10. После окончания работы с микроскопом необходимо привести его в положение малого увеличения, поднять объектив, снять с предметного стола стекло с микропрепаратом, протереть мягкой салфеткой все части микроскопа и убрать его в место хранения.

3. Отработайте последовательность действий при работе с микроскопом.

Выполните самостоятельно.

Вопросы в конце параграфа

1. Какие увеличительные приборы вы знаете?

Ручная лупа, штативная лупа, оптический микроскоп, электронный микроскоп.

2. Что представляет собой лупа и какое увеличение она даёт?

Лупа — это самый простой увеличительный прибор. Она состоит из увеличивающей линзы, оправы и ручки или штатива.

Ручные лупы могут увеличивать предметы в 2 — 20 раз. Штативные лупы обычно мощнее. Они могут увеличивать предметы в 10 — 25 раз.

3. Как устроен микроскоп?

Световой микроскоп состоит из тубуса, окуляра, одного или нескольких объективов, штатива, предметного стола с отверстием, винтов и зеркала. 

В тубусе, окуляре и объективах находятся увеличительные линзы. Предметный столик используется для размещения на нем микропрепарата, а зеркало — для направления луча света на исследуемый объект. При помощи винтов можно установить микроскоп в оптимальное для исследования положение. Штатив же удерживает все элементы микроскопа и делает работу на нем удобной.

4. Как узнать, какое увеличение даёт микроскоп?

Для того, чтобы узнать какое увеличение даёт конкретный микроскоп нужно посмотреть на цифры, которые написаны на оправе окуляра и объектива, а затем перемножить эти цифры.

Например, на окуляре может быть написано 10х, а на объективе 30х. Тогда наибольшее возможное увеличение, которое может дать данный микроскоп, будет равно 10 • 30 = 3 000 раз.

То есть можно будет увеличить рассматриваемый объект в  3 000 раз.

Подумайте

Почему с помощью светового микроскопа нельзя изучать непрозрачные предметы?

Невозможность изучения на световом микроскопе непрозрачных предметов объясняется особенностью конструкции данного типа оборудования.

Как мы знаем, зеркало, отражающее и направляющее световые лучи на изучаемый объект, находится под предметным столом с микропрепаратом. То есть изучаемый объект должен быть подсвечен снизу для того, чтобы мы могли увидеть его структуру.

Если же в качестве микропрепарата используется непрозрачный объект, то световой луч от зеркала не может пробиться сквозь него и в окуляр можно будет увидеть только тёмное пятно.

Задания

Выучите правила работы с микроскопом.

Используя дополнительные источники информации, выясните, какие подробности строения живых организмов позволяют рассмотреть самые современные микроскопы.

С помощью современных микроскопов, например электронных, можно рассмотреть вирусы, бактерии, клетки живых организмов, составные части клеток: вакуоль, ядро, цитоплазму и т.д. Можно понаблюдать за кровяными тельцами, строением растений и их частей и прочими объектами.

Сейчас существуют устройства, которые позволяют увидеть объемное 3-х мерное изображение изучаемого объекта. Называются такие устройства стереомикроскопы. При помощи такого оборудования чаще всего проводится изучение поверхности металла, древесины, пластмассы, минералов и других твёрдых предметов. 

Словарик

Клетка — это элементарная единица строения всех живых организмов кроме вирусов.

Лупа — это самый простой увеличительный прибор, который состоит из двояковыпуклого увеличительного стекла, оправы и ручки (или штатива).

Микроскоп — это увеличительный прибор, который работает при помощи оптических линз и способен увеличивать изображение объекта в десятки, сотни или даже в тысячи раз.

Тубус — это деталь микроскопа, в которой расположены увеличительные линзы.

Окуляр — это верхняя часть тубуса микроскопа, состоящая из линзы и оправы и предназначенная для рассматривания изучаемого объекта.

Объектив — это нижняя часть тубуса микроскопа, включающая в себя несколько увеличительных стекл и оправу и предназначенная для дополнительного увеличения изображения объекта.

Штатив — это деталь микроскопа, предназначенная для соединения и удержания остальных деталей этого прибора.

Источник: https://bio-geo.ru/uc-pasechnik-5-6/

Геометрическая оптика – Оптические приборы. Фотоаппарат

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Урок 10. Оптические приборы. Фотоаппарат.

Оптические приборы, представляющие собой совокупность нескольких призм или линз, нескольких зеркал или одновременно линз, призм и зеркал, предназначены для преобразования световых пучков.

С их помощью могут изменяться направления хода световых лучей, или телесные углы, в пределах которых распространяются световые пучки.

Последнее обстоятельство связано с получением изображений, размеры которых отличаются от размеров предметов.

Первое, на что нужно обращать внимание при анализе действия оптической системы, — это назначение и реальные условия ее работы.

Где может располагаться предмет перед системой? Какое изображение (увеличенное, уменьшенное, обратное или прямое) должна давать система? С помощью чего регистрируется полученное изображение (на экране, фотопленке, рассматривается невооруженным глазом или глазом через какую-нибудь линзовую систему)?

Все оптические приборы можно разделить на две группы:

1) приборы, при помощи которых получают оптические изображения на экране. К ним относятся проекционные аппараты, фотоаппараты, киноаппараты и др.

2) приборы, которые действуют только совместно с человеческими глазами и не образуют изображений на экране. К ним относится лупа, микроскоп и различные приборы системы телескопов. Такие приборы называются визуальными.

Фотоаппаратом называется оптико-механический прибор, предназначенный для получения на фотопленке или фотопластинке изображения фотографируемого предмета.

Фотография была изобретена в 30–х годах XIX века и прошла долгий путь развития. Современная фотография, ставшая малоформатной, моментальной, цветной, стереоскопической, нашла широчайшее применение во всех областях нашей жизни.

Велика её роль в исследовании природы. Фотография позволяет рассматривать различные объекты (от микроскопических до космических), невидимые излучения и т.д.

Всем известное значение художественной фотографии, детищем которой является кино.

Основными частями фотоаппарата являются непрозрачная камера и система линз, называемая объективом. Простейший объектив представляет собой одну собирающую линзу. Объектив создаёт вблизи задней стенки камеры действительное  перевёрнутое изображение фотографируемого предмета.

В большинстве случаев предмет находится на расстоянии, большем двойного фокусного, поэтому изображение получается уменьшенным. В том месте, где получается изображение, помещается фотоплёнка или фотопластинка, покрытая слоем светочувствительного вещества – фотоэмульсией.

Фотографируемые предметы могут находиться на разных расстояниях от аппарата, следовательно, расстояние между объективом и плёнкой также необходимо изменять, что осуществляется обычно перемещением объектива.

Световая энергия, попадающая на светочувствительный слой, дозируется фотографическим затвором, который даёт доступ свету лишь на определённое время – время экспозиции. Время экспозиции зависит от чувствительности фотоэмульсии и от освещённости плёнки, которая зависит, в частности, от диаметра объектива.

Диаметр действующей части объектива можно менять с помощью диафрагмы и этим регулировать освещённость фотоплёнки. Уменьшая отверстие диафрагмы, можно добиться того, что изображение предметов, находящихся на различных расстояниях от аппарата, будут достаточно чёткими. Возрастёт, как говорят, глубина резкости.

Диафрагма регулирует световой поток, который попадает на пленку. Фотоаппарат дает уменьшенное, обратное, действительное изображение, которое фиксируется на пленке. Под действием света состав пленки изменяется и изображение запечатлевается на ней.

Оно остаётся невидимым до тех пор, пока пленку не опустят в специальный раствор – проявитель. Под действием проявителя темнеют те места пленки, на которые падал свет. Чем больше было освещено какое-нибудь место пленки, тем темнее оно будет после проявления. Полученное изображение называется негативом (от лат.

negativus – отрицательный), на нем светлые места предмета выходят темными, а темные светлыми.

Чтобы это изображение под действием света не изменялось, проявленную пленку погружают в другой раствор – закрепитель. В нем растворяется и вымывается светочувствительный слой тех участков пленки, на которые не подействовал свет. Затем пленку промывают и сушат.

С негатива получают позитив (от лат. pozitivus – положительный), т. е. изображение, на котором темные места расплолжены так же как и на фотографируемом предмете. Для этого негатив прикладывают к бумаге тоже покрытой светочувствительным слоем (к фотобумаге), и освещают. Затем фотобумагу опускают в проявитель, потом в закрепитель, промывают и сушат.

После проявления пленки при печатании фотографий пользуются фотоувеличителем, который увеличивает изображение негатива на фотобумаге.

Проекционный аппарат (проектор) предназначен для получения на экране действительного увеличенного изображения. Следовательно, и здесь объектив представляет собой собирающую линзу, только предмет помещают между F и 2F (F ϕ2 , то с помощью лупы на предмете можно рассмотреть более мелкие детали, чем невооруженным глазом.

Из рисунке видно также, что линейное увеличение лупы: 

Так как OB2 = d0, а OB1 ≈ F (F — фокусное расстояние лупы), то где d0 = 25 см. Следовательно, увеличение, даваемое лупой, равно отношению расстояния наилучшего зрения к фокусному расстоянию лупы.

Микроскоп. Для получения больших угловых увеличений (от 20 до 2000) используют оптические микроскопы. Увеличенное изображение мелких предметов в микроскопе получают с помощью оптической системы, которая состоит из объектива и окуляра.

Простейший микроскоп – это система с двух линз: объектива и окуляра. Предмет АВ размещается перед линзой, которая является объективом, на расстоянии F1 < d < 2F1 и рассматривается через окуляр, который используется как лупа. Увеличение Г микроскопа равно произведению увеличения объектива Г1 на увеличение окуляра Г2:

Г = Г1∙Г2

Принцип действия микроскопа сводится к последовательному увеличению угла зрения сначала объективом, а затем – окуляром.

читать далее

Источник: https://geo-opt.ucoz.ru/index/opticheskie_pribory_fotoapparat/0-15

5 разных типов микроскопов и их применение

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Как и многие другие технологические устройства, микроскопы имеют очень долгую историю. Самые ранние микроскопы содержали простое увеличительное стекло с малой мощностью (до 10 раз). Их использовали для наблюдения за маленькими насекомыми, такими как блохи.

Ранние версии оптических микроскопов были разработаны в конце 15 века. Хотя изобретатель неизвестен, за эти годы было сделано несколько заявлений. Использование микроскопов для исследования органических тканей появилось только в 1644 году.

Сегодня у нас есть микроскопы, которые могут обеспечить разрешение в 50 пикометров с увеличением до 50 миллионов раз, что достаточно для наблюдения ультраструктуры различных неорганических и биологических образцов.

Современные микроскопы можно классифицировать по-разному. Один из способов сгруппировать их – это способ их взаимодействия с образцами для создания изображений. Основываясь на том же факторе, мы перечислили 5 основных типов микроскопов и их использование.

1. Оптические микроскопы

Оптические микроскопы являются наиболее распространенными микроскопами, которые используют свет, чтобы пройти через образец для генерации изображений. Они могут иметь очень простую конструкцию, хотя сложные оптические микроскопы направлены на повышение разрешения и контрастности образца.

В дальнейшем их можно подразделить на два типа: простые и сложные микроскопы. Простой микроскоп использует одну линзу (например, увеличительное стекло) для увеличения, в то время как сложные микроскопы используют несколько линз для увеличения образца.

Они часто оснащены цифровой камерой, поэтому образец можно наблюдать с помощью компьютера. Это позволяет провести глубокий анализ микроскопического изображения.

Оптические микроскопы могут обеспечивать увеличение до 1250 раз с теоретическим пределом разрешения 0,250 микрометров. Тем не менее, развитие сверхразрешенной флуоресцентной микроскопии в последнее десятилетие привело оптическую микроскопию в наноразмерность.

Варианты оптического микроскопа

  1. Стереомикроскоп : предназначен для наблюдения образцов в 3D при небольшом увеличении.
  2. Сравнительный микроскоп : используется для исследования бок о бок образцов.
  3. Поляризационный микроскоп : используется в оптической минералогии и петрологии для выявления минералов и горных пород в тонких срезах.
  4. Двухфотонный микроскоп : позволяет получать изображения живых тканей глубиной до 1 мм.
  5. Инвертированный микроскоп : исследует образец снизу; обычно используется для металлографии и клеточных культур в жидкости.
  6. Эпифлуоресцентный микроскоп : разработан для анализа образцов, содержащих флуорофоры.

Применение

Основные оптические микроскопы часто встречаются в классах и дома. Сложные широко используются в фармацевтических исследованиях, микробиологии, микроэлектронике, нанофизике и минералогии.

Они часто используются для исследования тканей с целью изучения проявлений заболеваний. В клинической медицине исследование биопсии или хирургического образца относится к гистопатологии.

2. Электронные микроскопы

Электронный микроскоп использует пучок ускоренных электронов для получения изображения образца. Точно так же, как оптические микроскопы используют стеклянные линзы, электронные микроскопы используют фасонные магнитные поля для создания систем электронно-оптических линз.

Поскольку длина волны электрона может быть намного короче, чем у фотонов, электронные микроскопы имеют более высокую разрешающую способность и увеличение, чем обычные оптические микроскопы. Они могут выявить структуры объектов размером с пикометр.

Первый электронный микроскоп, который превысил разрешение, достигнутое с помощью оптического микроскопа, был разработан немецким физиком Эрнстом Руской в ​​1933 году. С тех пор были сделаны многочисленные улучшения для дальнейшего улучшения увеличения и разрешения микроскопа.

Современные электронные микроскопы способны увеличивать образцы до 2000000 раз, однако они все еще полагаются на прототип Руска (разработанный в 1931 году) и его связь между разрешением и длиной волны.

Электронные микроскопы имеют некоторые ограничения: они дороги в изготовлении, обслуживании и должны быть размещены в стабильных средах, таких как системы подавления магнитного поля. Также объекты должны просматриваться в вакууме.

Современный просвечивающий электронный микроскоп | Предоставлено: Дэвид Морган из Кембриджа, Великобритания.

Два основных типа электронного микроскопа

1. Просвечивающий электронный микроскоп: используется для наблюдения за тонкими образцами, через которые могут проходить электроны, создавая проекционное изображение. Он может захватывать мелкие детали размером с колонку атомов.

В этом случае образец обычно представляет собой очень тонкий срез (

Источник: https://new-science.ru/5-raznyh-tipov-mikroskopov-i-ih-primenenie/

Микроскоп

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива и окуляра.

Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы.

Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости, в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.

Прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом, используемые для многократного увеличения рассматриваемых объектов.

С помощью этих приборов определяются размеры, форма и строение мельчайших частиц. Микроскоп – незаменимое оптическое оборудование для таких сфер деятельности, как медицина, биология, ботаника, электроника и геология, так как на результатах исследований основываются научные открытия, ставится правильный диагноз и разрабатываются новые препараты.

Первый микроскоп, изобретённый человечеством, были оптическими, и первого изобретателя не так легко выделить и назвать. Самые ранние сведения о микроскопе относят к 1590 году.

Чуть позже, в 1624-ом году Галилео Галилей представляет свой составной микроскоп, который он первоначально назвал «оккиолино».

Годом спустя его друг по Академии Джованни Фабер предложил для нового изобретения термин микроскоп.

В зависимости от требуемой величины разрешения рассматриваемых микрочастиц материи, микроскопии, микроскопы классифицируются на:

Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, то есть наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличны один от другого. Для нормального глаза при удалении от объекта на т. н.

расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины.

До середины XX века работали только с видимым оптическим излучением, в диапазоне 400—700 нм, а также с ближним ультрафиолетом (люминесцентный микроскоп). Оптически микроскоп не мог давать разрешающей способности менее полупериода волны опорного излучения (диапазон длин волн 0,2—0,7 мкм, или 200—700 нм).

Таким образом, оптический микроскоп способен различать структуры с расстоянием между точками до ~0,20 мкм, поэтому максимальное увеличение, которого можно было добиться, составляло ~2000 крат.

Бинокулярный микроскоп позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие, это оптический прибор для многократного увеличения рассматриваемых объектов, который обладает специальной бинокулярной насадкой, позволяющей вести изучение объекта при помощи обоих глаз. В этом и заключается его удобство и преимущество перед обычными микроскопами. Именно поэтому бинокулярный микроскоп чаще других применяется в профессиональных лабораториях, медицинских учреждениях и высших учебных заведениях. В числе других преимуществ данного прибора необходимо отметить высокое качество и контрастность изображения, механизмы грубой и точной настройки. Бинокулярный микроскоп работает по тому же принципу, что и обычные монокулярные: объект изучения помещают под объектив, где на него направляется искусственный световой поток. Бинокулярный микроскоп применяется для биохимических, патологоанатомических, цитологических, гематологических, урологических, дерматологических, биологических и общеклинических исследований. Общее увеличение (объектив*окуляр) оптических микроскопов с бинокулярной насадкой обычно больше, чем у соответствующих монокулярных микроскопов.

Стереомикроскоп, как и другие виды оптических микроскопов, позволяют работать как в проходящем, так и в отражённом свете. Обычно они имеют сменные окуляры бинокулярной насадки и один несменный объектив (есть и модели со сменными объективами).

Большинство стереомикроскопов дает существенно меньшее увеличение, чем современный оптический микроскоп, однако имеет существенно большее фокусное расстояние, что позволяет рассматривать крупные объекты.

Кроме того, в отличие от обычных оптических микроскопов, которые дают, как правило, инвертированное изображение, оптическая система стереомикроскопа не «переворачивает» изображение. Это позволяет широко использовать их для препарирования микроскопических объектов вручную или с использованием микроманипуляторов.

Наиболее широко бинокуляры используются для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как горные породы, металлы, ткани; в микрохирургии и пр.

Специфика металлографического исследования заключается в необходимости наблюдать структуру поверхности непрозрачных тел. Поэтому металлографический микроскоп построены по схеме отраженного света, где имеется специальный осветитель установленный со стороны объектива.

Система призм и зеркал направляет свет на объект, далее свет отражается от не прозрачного объекта и направляется обратно в объектив.

Современный прямой металлографический микроскоп характеризуются большим расстоянием между поверхностью столика и объективами и большим вертикальным ходом столика, что позволяет работать с крупными образцами. Максимальное расстояние может достигать десятки сантиметров.

Но обычно в материаловедении используются инвертированный микроскоп, как не имеющие ограничения на размер образца (только на вес) и не требующие параллельности опорной и рабочей граней образца (в этом случае они совпадают).

В основе принципа действия поляризационного микроскопа лежит получение изображения исследуемого объекта при его облучении поляризованными лучами, которые в свою очередь должны быть получены из обычного света с помощью специального прибора — поляризатора.

В сущности при прохождении поляризованного света через вещество либо отраженное от него меняет плоскость поляризации света в результате чего на втором поляризационном фильтре выявляется в виде излишнего затемнения. Либо дают специфичные реакции как двойное лучепреломление в жирах.

Поляризационный микроскоп предназначен для наблюдения, фотографирования и видеопроекции объектов в поляризованном свете, а также исследований по методам фокального экранирования и фазового контраста.

Поляризационный микроскоп используется для исследования широкого круга тех свойств и явлений, которые обычно недоступны для привычного оптического микроскопа. Поляризационный микроскоп снабжается бесконечной оптикой с профессиональным программным обеспечением.

Принцип действия люминесцентных микроскопов основывается на свойствах флюоресцентного излучения. Микроскоп используются для исследования прозрачных и непрозрачных объектов.

Люминесцентное излучение, по-разному отражается различными поверхностями и материалами, что и позволяет успешно применять его для проведения иммунохимических, иммунологических, иммуноморфологических и иммуногенетических исследований.

Благодаря их уникальным возможностям, люминесцентный микроскоп широко используются в фармацевтике, ветеринарии и растениеводстве, а, кроме того, в биотехнологических отраслях промышленности. Люминесцентный микроскоп также практически незаменим для работы экспертно-криминалистических центров и санитарно-эпидемиологических учреждений.

Измерительный микроскоп служит для точного измерения угловых и линейных размеров объектов. Используется в лабораторной практике, в технике и машиностроении. На универсальном измерительном микроскопе проводятся измерения проекционным методом, а также методом осевого сечения.

Универсальный измерительный микроскоп отличается простотой автоматизации благодаря своим конструктивным особенностям. Наиболее простым решением является установка квазиабсолютного датчика линейных перемещений, благодаря чему значительно упрощается процесс наиболее часто проводимых (на УИМ) измерений.

Современное применение универсального измерительного микроскопа обязательно подразумевает наличие как минимум цифрового отсчетного устройства.

Несмотря на появление новых прогрессивных средств измерения, универсальный измерительный микроскоп достаточно широко используется в измерительных лабораториях благодаря своей универсальности, простоте измерения, а также возможности легко автоматизировать процесс проведения измерения.

Электронный микроскоп позволяют получать изображение объектов с максимальным увеличением до 1000000 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока пучка электронов с энергиями 200 В ÷ 400 кэВ и более (например, просвечивающий электронный микроскоп высокого разрешения с ускоряющим напряжением 1 МВ). Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема. Для получения изображения электронный микроскоп использует специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами.

Сканирующий зондовый микроскоп это класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом.

В общем случае позволяет получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Сканирующий зондовый микроскоп в современном виде изобретен Гердом Карлом Биннигом и Генрихом Рорером в 1981 году.

  Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд-образец.

Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Основные типы сканирующих зондовых микроскопов:

  1. Сканирующий атомно-силовой микроскоп

  2. Сканирующий туннельный микроскоп

  3. Ближнепольный оптический микроскоп

Рентгеновский микроскоп — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра.

Рентгеновский микроскоп по разрешающей способности находится между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров).

В настоящее время существуют рентгеновский микроскоп с разрешающей способностью около 5 нанометров.

Рентгеновский микроскоп бывают:

  1. Проекционный рентгеновский микроскоп.
    ППроекционный рентгеновский микроскоп представляет собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство.

    Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше. В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы.

    Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки.

    В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такой микроскоп имеют разрешающую способность до 30 нанометров.

  2. Отражательный рентгеновский микроскоп.
    В микроскопе этого типа используются приёмы, позволяющие добиться максимального увеличения, благодаря чему линейное разрешение проекционного рентгеновского микроскопа достигает 0,1—0,5 мкм.

    В качестве линз в них используется система зеркал. Изображения, создаваемые отражательными рентгеновскими микроскопами даже при точном выполнении профиля их зеркал искажаются различными аберрациями оптических систем: астигматизм, кома.

    Для фокусировки рентгеновского излучения применяются также изогнутые монокристаллы. Но при этом на качество изображения сказываются структурные несовершенства монокристаллов, а также конечная величина брэгговских углов дифракций.

    Отражательный рентгеновский микроскоп не получил широкого распространения из-за технических сложностей его изготовления и эксплуатации.

Дифференциальный интерференционно-контрастный микроскоп позволяет определить оптическую плотность исследуемого объекта на основе принципа интерференции и таким образом увидеть недоступные глазу детали. Относительно сложная оптическая система позволяет создать чёрно-белую картину образца на сером фоне.

Это изображение подобно тому, которое можно получить с помощью фазово-контрастного микроскопа, но в нём отсутствует дифракционное гало. В дифференциальном интерференционно-контрастном икроскопе поляризованный луч из источника света разделяется на два луча, которые проходят через образец разными оптическими путями.

Длина этих оптических путей (т. е. произведение показателя преломления и геометрической длины пути) различна. Впоследствии эти лучи интерферируют при слиянии. Это позволяет создать объемное рельефное изображение, соответствующее изменению оптической плотности образца, акцентируя линии и границы.

Эта картина не является точной топографической картиной.

Источник: https://mbs10.ru/mikroskop.html

Устройство микроскопа и работа с ним

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Устройство микроскопа и правила работы с ним

Микроскоп – это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза.

Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения.

Бесполезное – это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения.

Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света.

Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз.

 Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую и механическую (рис. 1). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Рис. 1. Устройство световых микроскопов:

А – МИКМЕД-1; Б – БИОЛАМ.

1- окуляр, 2- тубус, 3- тубусодержатель, 4- винт грубой наводки, 5- микрометренный винт, 6- подставка, 7- зеркало, 8- конденсор, ирисовая диафрагма и светофильтр, 9- предметный столик, 10- револьверное устройство, 11- объектив, 12- корпус коллекторной линзы, 13- патрон с лампой, 14- источник электропитания.

Объектив – одна из важнейших частей микроскопа, поскольку он определяет полезное увеличение объекта. Объектив состоит из металлического цилиндра с вмонтированными в него линзами, число которых может быть различным. Увеличение объектива обозначено на нем цифрами. В учебных целях используют обычно объективы х8 и х40. Качество объектива определяет его разрешающая способность.

Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения.

Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно.

Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.

Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.

Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.

Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.

Электроосветитель устанавливается под конденсором в гнездо подставки.

Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.

Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.

Кольцо с матовым стеклом или светофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка – это основание микроскопа.

Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами.

Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм.

Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.

Тубус или трубка – цилиндр, в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Тубусодержатель несет тубус и револьвер.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы – зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.

Правила работы с микроскопом

При работе с микроскопом необходимо соблюдать операции в следующем порядке:

1. Работать с микроскопом следует сидя;

2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;

3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;

4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;

5. Работу с микроскопом всегда начинать с малого увеличения;

6. Опустить объектив 8- в рабочее положение, т.е. на расстояние 1 см от предметного стекла;

7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;

8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;

9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;

10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;

11. Если изображение не появилось, то надо повторить все операции пунктов 6, 7, 8, 9;

12. Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение.

При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две риски, а на микрометренном винте – точка, которая должна все время находиться между рисками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение.

При несоблюдении этого правила, микрометренный винт может перестать действовать;

13. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Микроскоп биологический стереоскопический МБС-1 (рис. 2) дает прямое и объемное изображение объекта в проходящем или отраженном свете. Он предназначен для изучения мелких объектов и препарирования их, так как имеет большое рабочее расстояние (расстояние от покровного стекла до фронтальной линзы).

Рис. 2. Устройство микроскопа МБС-1:

1- окуляр, 2- винт грубой наводки, 3- подставка, 4- зеркало, 5- предметный столик, 6- стойка, 7- оптическая головка, 8- объектив, 9- рукоятка переключения увеличения, 10- бинокулярная насадка, 11- лампа.

Основная часть микроскопа – оптическая головка. В нижнюю часть ее вмонтирован объектив, состоящий из системы линз, которые можно переключать при помощи рукоятки и этим менять увеличение.

Увеличения объектива обозначены цифрами на рукоятке – х0,6, х1, х2, х4, х7. На корпусе головки имеется точка.

Для установки нужного увеличения объектива надо цифру на рукоятке совместить с точкой на корпусе головки.

На верхнюю часть головки установлена бинокулярная насадка. Окуляры имеют увеличения х6, х8, х12,5. Для установки удобного для глаз расстояния между окулярами надо раздвинуть или сдвинуть тубусы.

К задней стенке корпуса головки прикреплен кронштейн с реечным механизмом передвижения. Подъем и опускание корпуса головки осуществляется вращением винта. Кронштейн надет на стойку, прикрепленную к подставке.

Для работы в проходящем свете, в корпус подставки вмонтирован отражатель света, с зеркальной и матовой поверхностями. С передней стороны корпуса имеется окно для доступа дневного света. Для искусственного освещения предназначена лампа, которую вставляют или в отверстие с задней стороны корпуса (для проходящего света), или в кронштейн, укрепленный на объективе (для отраженного света).

Столик установлен в круглом окне на верхней поверхности корпуса подставки. Он может быть либо стеклянным (при проходящем свете), либо металлическим, с белой и черной поверхностями (при отраженном свете).

Источник: https://forma-odezhda.ru/encyclopedia/ustrojstvo-mikroskopa-i-rabota-s-nim/

Как рассмотреть нанообъект в оптический микроскоп • Библиотека

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Как известно, основную долю информации об окружающем мире человек получает с помощью зрения. Глаз человека — сложный и совершенный прибор. Этот созданный природой прибор работает со светом — электромагнитным излучением, диапазон длин волн которого находится между 400 и 760 нанометрами. Цвет, который при этом воспринимает человек, изменяется от фиолетового до красного.

Электромагнитные волны, соответствующие видимому свету, взаимодействуют с электронными оболочками атомов и молекул глаза. Результат этого взаимодействия зависит от того, в каком состоянии находятся электроны этих оболочек. Свет может поглощаться, отражаться или рассеиваться.

Что именно произошло со светом, может многое рассказать об атомах и молекулах, с которыми он взаимодействовал. Диапазон размеров атомов и молекул от 0,1 до десятков нанометров. Это во много раз меньше, чем длина волны света. Тем не менее, объекты именно таких размеров — назовем их нанообъектами — очень важно увидеть.

Что же надо для этого сделать? Обсудим сначала, что может рассмотреть человеческий глаз.

Обычно, когда говорят о разрешающей способности того или иного оптического прибора, оперируют двумя понятиями. Одно из них — угловое разрешение, а второе — линейное разрешение. Эти понятия взаимосвязаны. К примеру, для человеческого глаза угловое разрешение составляет приблизительно 1 угловую минуту.

При этом глаз может различить два точечных объекта, удаленных от него на 25–30 см, только тогда, когда расстояние между этими объектами больше чем 0,075 мм. Это вполне сравнимо с разрешением обычного компьютерного сканера.

В самом деле, разрешение 600 точек на дюйм означает, что сканер может различить точки, расположенные на расстоянии 0,042 мм друг от друга.

Для того чтобы можно было различать объекты, расположенные на еще меньших расстояниях друг от друга, был придуман оптический микроскоп — прибор, увеличивающий разрешающую способность глаза. Выглядят эти приборы по-разному (что видно из рисунка 1), но принцип действия у них один тот же. Оптический микроскоп позволил отодвинуть предел разрешения до долей микрона.

Уже 100 лет назад оптическая микроскопия сделала возможным изучать объекты микронных размеров. Однако тогда же стало ясно, что простым увеличением количества линз и улучшением их качества добиться дальнейшего увеличения разрешающей способности невозможно. Разрешение оптического микроскопа оказалось ограничено свойствами самого света, а именно его волновой природой.

Еще в конце позапрошлого века было установлено, что разрешение оптического микроскопа составляет . В этой формуле λ — длина волны света, а nsin u — числовая апертура объектива микроскопа, которая характеризует как микроскоп, так и то вещество, которое находится между объектом изучения и самой близкой к нему линзой микроскопа.

И действительно, в выражение для числовой апертуры входят показатель преломления n среды, находящейся между объектом и объективом, и угол u между оптической осью объектива и самыми крайними лучами, которые выходят из объекта и могут попасть в этот объектив. Показатель преломления вакуума равен единице.

У воздуха этот показатель очень близок к единице, у воды он составляет 1,33303, а у специальных жидкостей, используемых в микроскопии для получения максимального разрешения, n доходит до 1,78. Каким бы ни был угол u, величина sin u не может быть больше единицы.

Таким образом, разрешение оптического микроскопа не превышает долей длины волны света.

Обычно считается, что разрешение составляет половину длины волны.

Интенсивность, разрешение и увеличение объекта — разные вещи. Можно сделать так, что расстояние между центрами изображений объектов, которые расположены в 10 нм друг от друга, будет 1 мм. Это будет соответствовать увеличению в 100 000 раз. Тем не менее, различить, один это объект или два, не получится.

Дело в том, что изображения объектов, размеры которых очень малы по сравнению с длиной волны света, будут иметь одинаковые форму и размеры, не зависящие от формы самих объектов. Такие объекты называют точечными — их размерами можно пренебречь.

Если такой точечный объект светится, то оптический микроскоп изобразит его в виде светлого кружка, окруженного светлыми и темными кольцами. Будем далее, для простоты, рассматривать именно источники света. Типичное изображение точечного источника света, полученное с помощью оптического микроскопа, показано на рисунке 2.

Интенсивность светлых колец намного меньше, чем у кружочка, и убывает по мере удаления от центра изображения. Чаще всего видно только первое светлое кольцо. Диаметр первого темного кольца равен . Функция, которая описывает такое распределение интенсивности, называется функцией рассеяния точки. Эта функция не зависит от того, каково увеличение.

Изображение нескольких точечных объектов будет представлять собой именно круги и кольца, как это видно из рисунка 3. Полученное изображение можно увеличивать, однако если изображения двух соседних точечных объектов сливаются, то они будут сливаться и дальше. Такое увеличение часто называют бесполезным — большие изображения просто будут более размытыми.

Пример бесполезного увеличения показан на рисунке 4. Формула часто называется дифракционным пределом, и она настолько знаменита, что именно ее высекли на памятнике автору этой формулы — немецкому физику-оптику Эрнсту Аббе.

Конечно, со временем оптические микроскопы стали снабжать разнообразными устройствами, позволяющими запоминать изображения.

Человеческий глаз дополнили сначала пленочные фото- и кинокамеры, а потом — камеры, в основе которых лежат цифровые устройства, преобразующие попадающий на них свет в электрические сигналы.

Самыми распространенными из таких устройств являются ПЗС-матрицы (ПЗС расшифровывается как прибор с зарядовой связью). Количество пикселей в цифровых камерах продолжает расти, однако само по себе это не может улучшить разрешение оптических микроскопов.

Еще двадцать пять лет назад казалось, что дифракционный предел непреодолим и что, для того чтобы изучать объекты, размеры которых во много раз меньше, чем длина волны света, необходимо отказаться от света как такового. Именно таким путем пошли создатели электронных и рентгеновских микроскопов.

Несмотря на многочисленные преимущества таких микроскопов, задача использования именно света для рассматривания нанообъектов оставалась. Причин для этого было много: удобство и простота работы с объектами, небольшое время, которое требуется для получения изображения, известные способы окрашивания образцов и многое другое.

Наконец, после долгих лет напряженной работы стало возможным рассматривать нанообъекты с помощью оптического микроскопа. Наибольший прогресс в этом направлении достигнут в области люминесцентной микроскопии. Конечно, дифракционный предел никто не отменял, но его удалось обойти.

В настоящее время существуют различные оптические микроскопы, позволяющие рассматривать объекты, размеры которых намного меньше длины волны того самого света, который создает изображения этих объектов. Все эти приборы объединяет один общий принцип. Попробуем пояснить, какой именно.

Из того, что уже говорилось о дифракционном пределе разрешения, ясно, что увидеть точечный источник не так уж сложно. Если этот источник обладает достаточной интенсивностью, его изображение будет отчетливо видно.

Форма и размер этого изображения, как уже говорилось, будут определяться свойствами оптической системы. При этом, зная свойства оптической системы и будучи уверенными в том, что объект точечный, можно определить, где именно находится объект. Точность определения координат такого объекта достаточно высока.

Иллюстрацией этого может служить рисунок 5. Координаты точечного объекта можно определить тем точнее, чем интенсивнее он светится. Еще в 80-х годах прошлого века с помощью оптического микроскопа умели определять положение отдельных светящихся молекул с точностью в 10–20 нанометров.

Необходимым условием столь точного определения координат точечного источника является его одиночество. Ближайший к нему другой точечный источник должен находиться настолько далеко, чтобы исследователь точно знал, что обрабатываемое изображение соответствует одному источнику.

Понятно, что это расстояние l должно удовлетворять условию . В этом случае анализ изображения может дать очень точные данные о положении самого источника.

Большинство объектов, размеры которых намного меньше разрешающей способности оптического микроскопа, можно представить как набор точечных источников. Источники света в таком наборе находятся друг от друга на расстояниях, намного меньших величины .

Если эти источники будут светить одновременно, то сказать что-либо о том, где именно они расположены, будет невозможно. Тем не менее, если суметь заставить эти источники светить по очереди, то положение каждого них можно определить с высокой точностью.

Если эта точность превышает расстояние между источниками, то, обладая знанием о положении каждого из них, можно узнать о том, каково их взаимное расположение. А это означает, что получена информация о форме и размерах объекта, который представлен как набор точечных источников.

Другими словами, в таком случае можно рассмотреть в оптический микроскоп объект, размеры которого меньше, чем дифракционный предел!

Таким образом, ключевым моментом является получение информации о различных частях нанообъекта независимо друг от друга. Существуют три основные группы методов, позволяющие сделать это.

Первая группа методов целенаправленно заставляет светить ту или иную часть исследуемого объекта. Самый известный из этих методов — сканирующая оптическая микроскопия ближнего поля. Рассмотрим ее подробнее.

Если внимательно изучить те условия, которые подразумеваются, когда речь идет о дифракционном пределе, обнаружится, что расстояния от объектов до линз значительно больше длины волны света. На расстояниях, сравнимых и меньших этой длины волны, картина получается другой.

Вблизи любого объекта, попавшего в электромагнитное поле световой волны, существует переменное электромагнитное поле, частота изменения которого такая же, как частота изменения поля в световой волне. В отличие от световой волны, это поле быстро затухает по мере удаления от нанообъекта.

Расстояние, на котором происходит уменьшение интенсивности, например, в e раз, сравнимо с размерами объекта. Таким образом, электромагнитное поле оптической частоты оказывается сконцентрированным в объеме пространства, размер которого намного меньше, чем длина волны света.

Любой нанообъект, попавший в эту область, будет так или иначе взаимодействовать со сконцентрированным полем.

Если тот объект, с помощью которого осуществляется это концентрирование поля, последовательно перемещать по какой-либо траектории вдоль изучаемого нанообъекта и регистрировать свет, излучаемый этой системой, то можно построить изображение по отдельным точкам, лежащим на этой траектории. Конечно, в каждой точке изображение будет выглядеть так, как показано на рисунке 2, но разрешение при этом будет определяться тем, насколько удалось сконцентрировать поле. А это, в свою очередь, определяется размерами того объекта, с помощью которого это поле концентрируется.

Самым распространенным способом такой концентрации поля является изготовление очень маленького отверстия в металлическом экране.

Обычно это отверстие находится на конце заостренного и покрытого тонкой пленкой металла световода (световод часто называется оптическим волокном и широко используется для передачи данных на большие расстояния). Сейчас удается изготавливать отверстия с диаметрами от 30 до 100 нм.

Таким же по величине получается и разрешение. Приборы, работающие по этому принципу, и называются сканирующими оптическими микроскопами ближнего поля. Они появились 25 лет тому назад.

Суть второй группы методов сводится к следующему. Вместо того чтобы заставлять соседние нанообъекты светить по очереди, можно использовать объекты, которые светятся разными цветами.

В этом случае с помощью светофильтров, пропускающих свет того или иного цвета, можно определять положение каждого из объектов, а потом — составлять единую картину.

Это очень похоже на то, что изображено на рисунке 5, только цвета для трех изображений будут различными.

Последняя группа методов, позволяющих преодолеть дифракционный предел и рассмотреть нанообъекты, использует свойства самих светящихся объектов. Существуют такие источники, которые можно «включать» и «выключать» с помощью специально подобранного света. Такие переключения происходят статистически.

Иначе говоря, если имеется много переключаемых нанообъектов, то, подобрав длину волны света и его интенсивность, можно заставить «выключиться» только часть из этих объектов. Остальные объекты будут продолжать светить, и можно получить от них изображение. После этого надо «включить» все источники и снова «выключить» часть из них.

Набор оставшихся «включенными» источников будет отличаться от набора, который остался «включенным» в первый раз. Повторяя такую процедуру много раз, можно получить большой набор изображений, отличающихся друг от друга.

Анализируя такой набор, можно установить местоположение большой доли всех источников с очень высокой точностью, значительно превышающей дифракционный предел. Пример сверхразрешения, полученного таким способом, приведен на рисунке 6.

В настоящее время оптическая микроскопия со сверхразрешением быстро развивается. Можно со всей уверенностью предполагать, что в грядущие годы эта область будет привлекать все большее число исследователей, и хочется верить, что среди них будут и читатели этой статьи.

Источник: https://elementy.ru/lib/431109

Микроскоп, как оптический прибор. Что это такое.. Статьи компании «Развитие образования»

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Микроскоп (от микро… и греческого skopeo — смотрю) – это оптический прибор для получения сильно увеличенного изображения изучаемого очень маленького объекта, невидимого невооруженным глазом. При помощи микроскопа можно рассмотреть мелкие детали…

Микроскоп (от микро… и греческого skopeo — смотрю) – это оптический прибор для получения сильно увеличенного изображения изучаемого очень маленького объекта, невидимого невооруженным глазом. При помощи микроскопа можно рассмотреть мелкие детали строения объекта, размеры которых лежат за пределами разрешающей способности глаза.

Человеческий глаз представляет собой естественную оптическую систему. И эта система характеризуется определенным разрешением. Что такое разрешение оптической системы? Это наименьшее расстояние между элементами наблюдаемого объекта, при котором эти элементы еще могут быть отличены один от другого (под элементами объекта мы понимаем точки или линии).

Если объект удален на так называемое расстояние наилучшего видения, которое составляет 250 мм, то для нормального человеческого глаза минимальное разрешение составляет примерно 0,1 мм, а у многих людей — около 0,20 мм. Примерно это соответствует толщине человеческого волоска.

Размеры объектов, таких как микроорганизмы большинства растительных и животных клеток, мелкие кристаллы, детали микроструктуры металлов и сплавов и т. п., значительно меньше 0,1 мм. Такие объекты мы будем называть микрообъекты.

Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопа определяют форму, размеры, строение и многие другие характеристики микрообъектов. Оптический микроскоп дает возможность различать структуры с расстоянием между элементами до 0,20 мкм, т.

е. разрешающая способность такого микроскопа составляет около 0,20 мкм или 200 нм.

Когда мы говорим о разрешающей способности микроскопа, мы подразумеваем, точно также как и под разрешающей способностью человеческого глаза, раздельное изображение двух близко расположенных объектов. Надо помнить, что разрешающая способность и увеличение – это не одно и тоже.

Например, если при помощи систем визуализации получить со светового микроскопа фотографии двух линий, расположенных на расстоянии менее 0,20 мкм (т. е. менее разрешающей способности микроскопа), то, как бы мы не увеличивали изображение, линии все равно будут сливаться в одну. Т. е.

мы сможем получить большое увеличение, но не улучшим его разрешение. Общее увеличение микроскопа равно произведению линейного увеличения объектива на угловое увеличение окуляра. Значения увеличений гравируются на оправах объективов и окуляров. Рассмотрим микроскоп плоского поля (не стереоскопический).

Это биологические микроскопы, металлографические, поляризационные. Обычно объективы такого микроскопа имеют увеличения от 4 до 100 крат, а окуляры — от 5 до 16. Поэтому общее увеличение оптического микроскопа лежит в пределах от 20 до 1600 крат.

Разумеется, технически возможно разработать и применить в микроскопе объективы и окуляры, которые дадут общее увеличение, значительно превышающее 1600 крат (например, существуют окуляры с увеличением 20 крат, которые в паре с объективом 100 крат дадут увеличение 2000 крат). Однако, обычно это нецелесообразно.

Большие увеличения не являются самоцелью оптической микроскопии. Назначение микроскопа состоит в том, чтобы обеспечить различение как можно более мелких элементов структуры препарата, т. е. в максимальном использовании разрешающей способности микроскопа. А она имеет предел, обусловленный волновыми свойствами света.

Таким образом, различают полезное и неполезное увеличение микроскопа. Полезное увеличение – это когда можно выявить новые детали строения объекта, а неполезное – это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения объекта.

Еще раз остановимся на понятии разрешающей способности. Разрешающая способность оптических приборов (так же ее называют разрешающая сила) характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта.

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Существование предела разрешающей способности влияет на выбор увеличений, которые мы получаем с помощью микроскопа. Увеличения до 1250 крат называют полезными, т. к.

при них мы различаем все элементы структуры объекта. При этом возможности микроскопа по разрешающей способности исчерпываются. Это увеличение получаем при использовании объектива 100 крат, работающего с масляной иммерсией, и окуляра 12,5 крат (полезное увеличение окуляров лежит от 7,5 до 12,5 крат).

При увеличениях свыше 1250 крат не выявляются никакие новые детали структуры препарата. Однако иногда такие увеличения используют — в микрофотографии, при проектировании изображений на экран и в некоторых других случаях.

Когда необходимо существенно более высокое полезное увеличение, используют электронный микроскоп. Этот микроскоп обладает существенно более высокой разрешающей способностью, нежели оптический микроскоп.

Электронный микроскоп – это прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30—100 кэв и более) в условиях глубокого вакуума.

Источник: https://robraz.ru/a44181-mikroskop-kak-opticheskij.html

Микроскоп, как оптический прибор. Разрешающая способность микроскопа. Классификация световых микроскопов

микроскоп: Микроскоп — оптический прибор, при помощи которого рассматривают

Микроскоп, как оптический прибор. Разрешающая способность микроскопа.

Микроскоп (от микро… и греческого  skopeo — смотрю) – это оптический прибор для получения сильно увеличенного изображения изучаемого очень маленького объекта, невидимого невооружённым глазом. При помощи микроскопа можно рассмотреть мелкие детали строения объекта, размеры которых лежат за пределами разрешающей способности глаза.

Человеческий глаз представляет собой естественную оптическую систему, которая характеризуется определённым разрешением. Разрешением оптической системы называется наименьшее расстояние между элементами наблюдаемого объекта, при котором эти элементы ещё могут быть отличены один от другого (под элементами объекта мы понимаем точки или линии).

Если объект удален на так называемое расстояние наилучшего видения, которое составляет250 мм, то для нормального человеческого глаза минимальное разрешение составляет примерно0,1 мм, а у многих людей — около0,2 мм. Примерно это соответствует толщине человеческого волоска.

Размеры объектов, таких как растительные и животные клетки, мелкие кристаллы, детали микроструктуры металлов и сплавов и т.п., значительно меньше0,1 мм. Такие объекты принято называть микрообъекты.

Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопа определяют форму, размеры, строение и многие другие характеристики микрообъектов.

Оптический микроскоп даёт возможность различать структуры с расстоянием между элементами до 0,20 мкм, т.е. разрешающая способность такого микроскопа составляет около 0,20 мкм или 200 нм.

Когда говорят о разрешающей способности микроскопа, подразумевают, также как и под разрешающей способностью человеческого глаза, раздельное изображение двух близко расположенных объектов. Однако, нужно понимать, что разрешающая способность и увеличение – это не одно и тоже.

Например, если при помощи систем визуализации получить со светового микроскопа фотографии двух линий, расположенных на расстоянии менее 0,20 мкм (т.е. менее разрешающей способности микроскопа), то, как бы мы не увеличивали изображение, линии все равно будут сливаться в одну. Т.е.

мы сможем получить большое увеличение, но не улучшим его разрешение. Общее увеличение микроскопа равно произведению линейного увеличения объектива на угловое увеличение окуляра. Значения увеличений гравируются на оправах объективов и окуляров. Рассмотрим микроскоп плоского поля (не стереоскопический).

Это биологические микроскопы, металлографические, поляризационные. Обычно объективы такого микроскопа имеют увеличения от 4 до 100 крат, а окуляры — от 5 до 16. Поэтому общее увеличение оптического микроскопа лежит в пределах от 20 до 1600 крат.

Разумеется, технически возможно разработать и применить в микроскопе объективы и окуляры, которые дадут общее увеличение, значительно превышающее 1600 крат (например, существуют окуляры с увеличением 20 крат, которые в паре с объективом 100 крат дадут увеличение 2000 крат). Однако, обычно это нецелесообразно.

Большие увеличения не являются самоцелью оптической микроскопии. Назначение микроскопа состоит в том, чтобы обеспечить различение как можно более мелких элементов структуры препарата, т.е. в максимальном использовании разрешающей способности микроскопа. А она имеет предел, обусловленный волновыми свойствами света.

Таким образом, различают полезное и неполезное увеличение микроскопа. Полезное увеличение – это когда можно выявить новые детали строения объекта, а неполезное – это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения объекта.

Еще раз остановимся на понятии разрешающей способности. Разрешающая способность оптических приборов (так же ее называют разрешающая сила) характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта.

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Существование предела разрешающей способности влияет на выбор увеличений, которые мы получаем с помощью микроскопа. Увеличения до 1250 крат называют полезными, т. к.

при них мы различаем все элементы структуры объекта. При этом возможности микроскопа по разрешающей способности исчерпываются. Это увеличение получаем при использовании объектива 100 крат, работающего с масляной иммерсией, и окуляра 12,5 крат (полезное увеличение окуляров лежит от 7,5 до 12,5 крат).

При увеличениях свыше 1250 крат не выявляются никакие новые детали структуры препарата. Однако иногда такие увеличения используют — в микрофотографии, при проектировании изображений на экран и в некоторых других случаях.

Когда необходимо существенно более высокое полезное увеличение, используют электронный микроскоп. Этот микроскоп обладает существенно более высокой разрешающей способностью, нежели оптический микроскоп.

Электронный микроскоп – это прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30—100 кэв и более) в условиях глубокого вакуума.

Классификация световых микроскопов и области их применения

По строению оптической схемы различают прямые (объективы, насадка и окуляры расположены над объектом) и инвертированные (объект находится над оптической системой, формирующей изображение) микроскопы. Также различают микроскопы плоского поля (дающие двухмерное изображение) и стереоскопические микроскопы (объемное – трехмерное изображение).

По способам освещения разделяют микроскопы проходящего света (изображение формируется светом, проходящим через объект) и отраженного света (изображение формируется светом, отраженным от поверхности объекта).

Микроскопы можно разделить также по методам исследования:

– светлого поля (на светлом фоне выделяется более темный объект);

– темного поля (на темном фоне выделяется светлый объект или его краевые структуры);

– фазового контраста (на светло-сером фоне наблюдается темно-серый рельефный объект);

– люминесценции (на темном фоне выделяются светящиеся объекты или части объекта);

– поляризованного света (наблюдается ярко окрашенное в различные цвета или оттенки изображение объекта).

Можно выделить следующиеобласти применения световых микроскопов:

-Биологические микроскопыдля лабораторных биологических и медицинских исследований прозрачных объектов. Доступны режимы светлого и темного поля, фазовый контраст, поляризованный и люминесцентный свет.

-Стереоскопические микроскопыв лабораториях и на различных производствах для получения увеличенных изображений объектов во время проведения рабочих операций. Возможна работа в отраженном и проходящем свете. Доступны режимы светлого и темного поля.

-Металлографические микроскопыв научных и промышленных лабораториях для исследования непрозрачных объектов. Работа в отраженном свете. Доступны режимы светлого и темного поля, фазовый контраст, поляризованный свет.

-Поляризационные микроскопыв научных и исследовательских лабораториях для специализированных исследований в поляризованном свете. Возможна работа в отраженном и проходящем свете. Доступны режимы светлого и темного поля. 

Объективы и окуляры для микроскопов

Объектив микроскопа – микрообъектив представляет собой сложную оптическую систему, образующую увеличенное изображение объекта, и является основной и наиболее ответственной частью микроскопа. Микрообъектив создает действительное перевернутое изображение, которое рассматривается через окуляр.

Объективы различаются по оптическим характеристикам и конструкции:

– По степени исправления хроматической аберрации: ахроматы, апохроматы и др. 

– С исправленной кривизной изображения: – планахроматы, планапохроматы. 

– По длине тубуса микроскопа -160 ммдля проходящего света,190 ммдля отраженного света, бесконечность – для проходящего и отраженного света; 

– По свойствам иммерсии: сухие системы (без иммерсии) и иммерсионные системы. 

Объективы апохроматы отличаются от ахроматов степенью исправления хроматической аберрации. Благодаря более совершенному устранению дефектов изображения, связанных с хроматической аберрацией, качество изображения, получаемого при наблюдении цветных объектов (окрашенные срезы, микроорганизмы и т.п.

), особенно при больших увеличениях, значительно выше при использовании апохроматов. Апохроматы, а также ахроматы большого увеличения применяются совместно с компенсационными окулярами. На оправе апохроматов обычно выгравировано АПО (APO).

У ахроматов и апохроматов, особенно большого увеличения, остается неисправленной кривизна поля изображения.

При визуальном наблюдении окуляр служит для рассматривания увеличенного изображения предмета, даваемого объективом. В этом случае он выполняет роль лупы.

Для нормального человеческого глаза изображение, образованное объективом, совмещается с передне фокальной плоскостью окуляра и тогда лучи выходят из окуляра параллельным пучком, давая изображение предмета на бесконечности.

Соответствующей перефокусировкой всего микроскопа можно получить изображение за окуляром на расстоянии наилучшего зрения. Окуляры широко применяются в качестве прокционных систем при микрофотографии, передаче действительного изображения на экран или какой-либо другой приемник изучения.

В нашей компании Вы можете приобрести различные виды микрокопов российских и зарубежных производителей, а также аксессуары и дополнительные комплектующие к микроскопам. Для получения более подробной инфомрации по техническим характеристикам и ценам микроскопического оборудования обращайтесь к специалистам компании по тел. (8512) 482-382. 

Источник: http://vikon-service.ru/articles/92830

Medic-studio
Добавить комментарий