Микроскопия в коротковолновой части видимого света.

Микроскопия – методы контраста

Микроскопия в коротковолновой части видимого света.

1. Cветлое поле

Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов, у которых различные участки структуры по-разному поглощают свет (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и другие).

Пучок лучей из осветительной системы проходит препарат и объектив и дает равномерно освещенное поле в плоскости изображения. Элементы структуры препарата частично поглощают и отклоняют падающий на них свет, что и обусловливает появление изображения.

Метод может быть полезен и при наблюдении непоглащающих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.

Метод светлого поля в отраженном свете применяется для наблюдения непрозрачных объектов, к примеру, травленых шлифов металлов, биологических тканей и различных минералов. Освещение препарата производится сверху, через объектив, который одновременно выполняет и роль осветительной системы. Изображение, как и при проходящем свете, создается за счет того, что разные участки препарата неодинаково отклоняют падающий на них свет, а отраженные лучи имеют различную интенсивность.

2. Темное поле

Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольнои микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.

Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами, находящимися в препарате. Темнопольная микроскопия основана на эффекте Тиндаля, известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света. Чтобы в объектив не попадали прямые лучи от осветителя, апертура объектива должна быть меньше, чем апертура конденсора. Для уменьшения апертуры в обычный объектив помещают диафрагму или пользуются специальными объективами, снабженными ирисовой диафрагмой. При темнопольной микроскопии микроорганизмы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие микроорганизмы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру. С помощью темнопольнои микроскопии изучают препараты типа раздавленная “капля”. Предметные стекла должны быть не толще 1,1-1,2 мм, покровные 0,17 мм, без царапин и загрязнений. При приготовлении препарата следует избегать наличия пузырьков и крупных частиц (эти дефекты будут видны ярко святящимися и не позволят наблюдать препарат). Для темнопольной применяют более мощные осветители и максимальный накал лампы. Настройка темнопольного освещения в основном заключается в следующем: 1) устанавливают свет по Келеру; 2) заменяют светлопольный конденсор темнопольным; 3) на верхнюю линзу конденсора наносят иммерсионное масло или дистиллированную воду; 4) поднимают конденсор до соприкосновения с нижней поверхностью предметного стекла; 5) объектив малого увеличения фокусируют на препарат; 6) с помощью центрировочных винтов переводят в центр поля зрения светлое пятно (иногда имеющее затемненный центральный участок); 7) поднимая и опуская конденсор, добиваются исчезновения затемненного центрального участка и получения равномерно освещенного светлого пятна. Если этого сделать не удается, то надо проверить толщину предметного стекла (обычно такое явление наблюдается при использовании слишком толстых предметных стекол – конус света фокусируется в толще стекла). После правильной настройки света устанавливают объектив нужного увеличения и исследуют препарат.

3. Поляризация Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным луче преломлением или отражением.

Такими объектами являются многие минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна. При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива – анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга. При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления. Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).

4. Фазовый контраст При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными.

Для наблюдения таких объектов используют фазово-контрастную микроскопию, основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом. Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из: 1) набора объективов со специальными фазовым пластинками; 2) конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов; 3) вспомогательного телескопа для настройки фазового контраста. Настройка фазового контраста заключается в следующем: 1) заменяют объективы и конденсор микроскопа на фазовые (обозначенные буквами Ph) ; 2) устанавливают объектив малого увеличения. Отверстие в диске конденсора должно быть без кольцевой диафрагмы (обозначенной цифрой “0”); 3) настраивают свет по Келеру; 4) выбирают фазовый объектив соответствующего увеличения и фокусируют его на препарат; 5) поворачивают диск конденсора и устанавливают соответствующую объективу кольцевую диафрагму; 6) вынимают из тубуса окуляр и вставляют на его место вспомогательный телескоп. Настраивают его так, чтобы были резко видны фазовая пластинка (в виде темного кольца) и кольцевая диафрагма (в виде светлого кольца того же диаметра). С помощью регулировочных винтов на конденсоре совмещают эти кольца. Вынимают вспомогательный телескоп и вновь устанавливают окуляр. Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст). Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п. В этих случаях часто применяют биологические микроскопы с обратным расположением оптики – инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор – сверху.

5. Флуоресценция (люминесценция) Флуоресцентная (люминесцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом. Цвет люминесценции смещен в более длинноволновую часть спектра по сравнению с возбуждающим ее светом (правило Стокса).

При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра. Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение. Устройство флуоресцентного микроскопа и правила работы с ним отличаются от обычного светового микроскопа в основном следующим: 1. Наличие мощного источника света в осветителе, излучающего преимущественно в коротковолновой (ультрафиолетовой, синей) части спектра (ртутно-кварцевая лампа или галогенная кварцевая лампа). 2. Наличие системы светофильтров: • возбуждающие светофильтры пропускают только ту часть спектра, которая возбуждает люминесценцию; • теплозащитный светофильтр защищает от перегрева другие светофильтры, препарат и оптику флуоресцентного микроскопа; • “запирающие” светофильтры расположены между окуляром. Эти светофильтры поглощают возбуждающее излучение и пропускают свет люминесценции от препарата к глазу наблюдателя. Способ освещения препаратов для возбуждения люминесценции заключается в том, что препарат освещают светом, падающим на него через объектив. Благодаря этому освещенность увеличивается при использовании объектов, имеющих большую числовую апертуру, т. е. тех, которые используются для изучения микроорганизмов. Важную роль при этом способе освещения играет специальная интерференционная светоделительная пластинка, направляющая свет в объектив. Она представляет собой полупрозрачное зеркало, которое избирательно отражает и направляет в объектив часть спектра, которая возбуждает люминесценцию, а пропускает в окуляр свет люминесценции. Оптика объективов флуоресцентного микроскопа изготавливается из нелюминесцирующих сортов оптического стекла и склеивается специальным нелюминесцирующим клеем. При работе с объективами масляной иммерсии используется нелюминесцирующее иммерсионное масло. Поскольку большинство микроорганизмов не обладают собственной люминесценцией существует несколько способов их обработки для наблюдения в флуоресцентном микроскопе. Прежде всего, это флуорохромирование – окрашивание сильно разведенными (до нескольких микрограмм/мл) растворами флуоресцирующих красителей (флуорохромов). Флуоресцентная микроскопия по сравнению с обычной позволяет: • сочетать цветное изображение и контрастность объектов; • изучать морфологию живых и мертвых клеток микроорганизмов в питательных средах и тканях животных и растений; • исследовать клеточные микроструктуры, избирательно поглощающие различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами; • определять функционально-морфологические изменения клеток; • использовать флуорохромы при иммунологических реакциях и подсчете бактерий в образцах с невысоким их содержанием.

6. Хоффмановский контраст

Хоффмановский контраст (ХК) представляет собой метод косого освещения, повышающий контраст в окрашенных и неокрашенных препаратах за счет образования градиента оптических фаз. ХК пoзвoляeт нaблюдaть тpexмepнoe изoбpaжeниe живыx oбpaзцoв в плacтикoвыx чaшкax c выcoкoй чeткocтью, чтo дaeт pacшиpeнныe вoзмoжнocти для peшeния нaучныx и cпeциaльныx мeдицинcкиx зaдaч. За счет использования бoльшиих paбoчих paccтoяний и выcoких чиcлoвых aпepтуp метод позволяет тoчнo oтcлeживaть движeние в пoлe зpeния, нaпpимep, пpи проведении микроманипуляций.

Дpугиe иccлeдoвaния – тaкиe, кaк элeктpoфизиoлoгия, вспомогательные репродуктивные технологии и ЭКО – тpeбуют нe тoлькo кoндeнcopoв, нo и oбъeктивoв c бoльшим paбoчим paccтoяниeм.

При иccлeдoвaнии тoлcтыx oбpaзцoв ХК пoмoгaeт peшить зaдaчу пocлoйнoгo изучeния oбpaзцa путeм выбopa пocлeдoвaтeльнocти фoкaльныx плaнoв.

Пpи этoм кaждый вepxний фoкaльный плaн нe нeceт инфopмaции о нижeлeжaщeм плaне.

ХК мoжeт быть пpимeнeн нa микpocкoпe c флуopecцeнтным ocвeтитeлeм. Изучeниe мopфoлoгии c пpимeнeниeм флуopecцeнции или бeз тaкoвoй вoзмoжнo бeз cмeны oбъeктивoв и oбpaзцa. Стоит отметить преимущество Хоффмановского контраста по сравнению с Фазовым контрастом. Известно, что Фaзoвoму кoнтpacту пpиcущ эффeкт Гaлo – появление светящегося ореола по контуру изображения объекта. B peзультaтe Bы мoжeтe пoтepять вaжную инфopмaцию. XК нe дaeт Гaлo, чтo пoзвoляeт лeгкo oпpeдeлять cвoйcтвa кpaeвыx cтpуктуp, нaпpимep, тoчнo зaмepять углы или расстояния.

7. ДИК (дифференциально-интерференционный контраст)

ДИК (дифференциально-интерференционный контраст) – является прекрасным механизмом для создания контраста в прозрачных препаратах. Микроскопия с ДИК представляет собой интерференционную систему с расщеплением пучка света, при которой контрольный пучок отклоняется на небольшое расстояние, обычно меньшее, чем диаметр дифракционного кружка. С помощью данного метода получается монохроматическое оттененное изображение, которое отображает градиент оптических путей как высоко-, так и низкопространственных частот, присутствующих в препарате. Те участки препарата, при прохождении через которые оптические пути удлиняются по отношению к контрольному пучку, выглядят ярче или темнее, тогда как участки, между которыми различия меньше, обладают противоположным контрастом. Чем круче становится градиент оптических пучков, тем резче контраст изображения

Источник: https://www.dia-m.ru/page.php?pageid=18

Люминесцентная микроскопия

Микроскопия в коротковолновой части видимого света.

Люминесцентная микроскопия (лат. lumen, luminis _ свет; греч, mikros малый + skopeo рассматривать, исследовать; син. флюоресцентная микроскопия) — метод микроскопии, позволяющий наблюдать первичную или вторичную люминесценцию микроорганизмов, клеток, тканей или отдельных структур, входящих в их состав. Люминесценция (см.

) возбуждается коротковолновой (сине-фиолетовой) частью видимого света либо ультрафиолетовыми лучами с длиной волны, близкой к видимому свету. Цвет люминесценции, т. е. длина волны излучаемого света, зависит от химической структуры и от физикохимического состояния микроскопируемого объекта, что и обусловливает возможность использования Л. м.

в целях микробиологической и цитологической диагностики, для дифференцирования отдельных компонентов клетки. Первичная люминесценция присуща ряду биологически активных веществ, таких как ароматические аминокислоты, порфирины, хлорофилл, витамины А, В2, В1, некоторые антибиотики (тетрациклин) и химиотерапевтические вещества (акрихин, риванол).

Вторичная, или наведенная, люминесценция возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями — флюорохрома-ми. Некоторые из этих красителей диффузно распределяются в клетках (напр., флюоресцеин), другие —избирательно связываются с определенными структурами клетки или даже с определенными хим. веществами.

Эта способность флюорохромов к избирательному окрашиванию позволяет проводить люминесцентно-цитол. и люминесцентно-цитохим. исследования.

В истории развития Л. м. выделяют несколько этапов, связанных с усовершенствованием методики:

1) доказательство А. Келером принципиальной возможности создания люминесцентного микроскопа; 2) создание в 1911 г. люминесцентного микроскопа, который был использован русским ботаником М. С.

Цветом для изучения люминесценции хлорофилла растительных клеток; 3) применение сильно разбавленных р-ров флюорохромов, избирательно связывающихся с определенными структурами клеток [Хайтингер (М. Haitinger, 1933— 1935)], и прежде всего акридинового оранжевого [Хайтингер, Штруггер (S.

Strugger), 1940]; 4) разработка метода возбуждения люминесценции падающим светом через объектив микроскопа с использованием интерференционной светоделительной пластинки (E. М. Брумберг и Г. Н.

Крылова, 1953) и выпуск отечественной промышленностью люминесцентных микроскопов и устройств, основанных на этом принципе (МЛ-1, МЛ-2, ОИ-17); 5) создание метода иммунофлюоресценции (см.), нашедшего широкое применение в микробиологии, иммунологии и других областях медико-биол. исследований [Кунс (А. Н. Goons), 1942, 1950].

В СССР значительный вклад в развитие и распространение Л. м. в медико-биол. исследованиях сделан М. Н. Мейселем.

Для проведения Л. м. применяют либо специальные люминесцентные микроскопы, либо приставки к обычным биол, микроскопам, позволяющие использовать их для наблюдения люминесценции микрообъектов (см. Микроскоп). Устройство люминесцентных микроскопов основано на некоторых физ. законах люминесценции.

Один из них — закон Стокса, согласно к-рому максимум спектра люминесценции смещен в длинноволновую область по отношению к спектру возбуждающего света. Это позволяет использовать для Л. м.

принцип скрещенных светофильтров, который заключается в том, что коротковолновое световое излучение (ультрафиолетовое, сине-фиолетовое), возбуждающее люминесценцию, выделяется возбуждающим светофильтром, помещенным перед осветителем микроскопа.

После прохождения препарата, в к-ром возбуждается люминесценция, этот свет полностью поглощается запирающим светофильтром, пропускающим более длинноволновый свет люминесценции.

Люминесцентный микроскоп снабжен мощным источником освещения с большой поверхностной яркостью, максимум излучения к-рого находится в коротковолновой области видимого спектра, системой светофильтров, а также интерференционной светоделительной пластинкой (или набором таких пластинок), применяемой при возбуждении люминесценции падающим светом. Эта система возбуждения люминесценции падающим светом через опак-иллюминатор, используемая в отечественных люминесцентных микроскопах (а в последнее время и в люминесцентных микроскопах, выпускаемых зарубежными фирмами), имеет ряд существенных преимуществ: 1) интерференционная светоделительная пластинка с нанесенными на нее слоями диэлектриков избирательно отражает на препарат более 90% света, возбуждающего люминесценцию, и почти полностью пропускает более длинноволновый свет люминесценции, что позволяет увеличить яркость люминесценции; 2) объектив микроскопа служит одновременно конденсором осветительной системы; поэтому при использовании высокоапертурных иммерсионных объективов с большим увеличением освещенность препарата и соответственно яркость люминесценции возрастают пропорционально четвертой степени апертуры объектива; 3) люминесцентную микроскопию можно сочетать с фазово-контрастной и интерференционной при освещении снизу через конденсор микроскопа. Источниками освещения для Л. м. чаще являются ртутно-кварцевые лампы сверхвысокого давления, а также ксеноновые лампы и кварцево-галогенные лампы накаливания. В качестве светофильтра применяют окрашенное в массе оптическое стекло или используют интерференционные светофильтры, имеющие лучшие спектральные характеристики.

Для возбуждения люминесценции при Л. м. пользуются также оптическими квантовыми генераторами— лазерами, излучение которых обладает высокой интенсивностью и монохроматичностью. При этом отпадает необходимость в применении возбуждающих светофильтров.

https://www.youtube.com/watch?v=NIRCkWaysjE

Поскольку для возбуждения люминесценции при Л. м.

обычно используют длинноволновую ультрафиолетовую, сине-фиолетовую, а иногда и зеленую область спектра, в люминесцентном микроскопе применяют обычную стеклянную оптику и обычные предметные и покровные стекла, пропускающие излучение в этой части спектра и не обладающие собственной люминесценцией. Иммерсионные и заключающие среды также должны соответствовать этим требованиям.

В качестве заключающих сред для препаратов могут быть использованы буферный р-р глицерина, а также нелюминесцирующие полимеры (полистирол, поливиниловый спирт и др.).

Наряду с визуальной оценкой люминесцентно – микроскопического изображения применяют его микрофотографирование (см. Микрофотография). Люминесцентная микрофотосъемка имеет ряд особенностей.

С одной стороны, недостаточная яркость свечения требует длительной экспозиции, с другой — под влиянием возбуждающего света интенсивность люминесценции быстро снижается, препараты выцветают, живые клетки повреждаются, погибают, и поэтому невозможно регистрировать динамику процессов, происходящих в клетках. Для преодоления этих затруднений необходимо использовать фотоматериалы с высокой общей и избирательной спектральной чувствительностью, высокоапертурные объективы, оку-ляры с минимальным собственным увеличением, однако достаточным для передачи деталей объекта, малоформатные микрофотонасадки. Возможна также обработка препаратов веществами, уменьшающими выцветание (гидрохиноном и т. д.).

М. Я. Корном и М. М. Бутсловым с сотр. (1968) разработана аппаратура и методика цветной люминесцентной микрофото- и киносъемки с использованием электронно-оптических усилителей яркости, позволяющих на несколько порядков уменьшить экспозицию и проводить регистрацию динамики процессов, происходящих в живых клетках.

Для количественной регистрации интенсивности люминесценции структур микрообъектов — цитофлюориметрии — применяют преимущественно фотоэлектрические методы с использованием фотоэлектронного умножителя (ФЭУ) в качестве чувствительного регистрирующего прибора (см. Фотоумножители).

Используют также метод регистрации интенсивности люминесценции клеток и их структур в определенных участках спектра — цитоспектрофлюориметрию.

Преимущества цитофлюориметрии перед абсорбционной цитофотометрией — ее более высокая чувствительность, отсутствие влияния характера распределения вещества в клетке пли структуре клетки на результаты измерений.

Одним из вариантов количественной регистрации люминесценции микрообъектов является метод импульсной цитофлюориметрии (цитофлюориметрии в потоке) и «сортировки» клеток по люминесцентным характеристикам.

Эти методы позволяют проанализировать интенсивность люминесценции десятков тысяч клеток в минуту и провести их разделение по характеру люминесценции.

Среди методов люминесцентного изучения микрообъектов наибольшее распространение получили прямое флюорохромирование — окрашивание флюорохромами и иммунофлюоресценция.

Отечественная промышленность выпускает различную аппаратуру для Л. м. Наиболее широко используется микроскоп МЛ-2, выпускаемый в нескольких вариантах. Производится также серия унифицированных люминесцентных микроскопов «Люмам», а также люминесцентные осветители с кварцевыми галогенными лампами (ОИ-28, ОИ-30).

Люминесцентные микроскопы серии «Люмам» : 1 — рабочий люминесцентный микроскоп «Люмам Р-1»; 2 — исследовательский люминесцентный микроскоп «Люмам И-3».

Микроскопы серии «Люмам» состоят из унифицированных узлов, различные комбинации которых позволяют получить три рабочие модели (Р1 — РЗ) и три исследовательские (И1 — И3), отличающиеся друг от друга комплектацией и возможностями использования (рис. ).

Осветители ОИ-28 и ОИ-30 устанавливают на обычные биологические микроскопы; они предназначены для освещения объектов сверху через опак-иллюминатор светом, возбуждающим видимую люминесценцию.

Осветитель ОИ-30 отличается тем, что в его комплект входят контактные объективы.

Л. м. широко применяют в вирусологии, микробиологии, гематологии, клин, цитодиагностике (особенно в онкологии для обнаружения малигнизированных клеток), в цитогенетике для изучения хромосом.

С этой целью на протяжении длительного времени используют флюорохром акридиновый оранжевый; применяют также флюорохромы бромистый этидий (этидиум бромид) и йодистый пропидий (припидиум йодид), преимущественно для цитофлюориметрии ДНК, а также люминесцентные варианты реакции Фейльгена.

Акридиновый оранжевый получил распространение в люминесцентной микроскопии нуклеопротеидов благодаря тому, что комплексы, образованные этим флюорохромом с двуспиральной ДНК, обладают зеленой люминесценцией, а комплексы с РНК и односпиральной ДНК — красной люминесценцией. Известны также люминесцентно-цитохим. методы выявления белков и липидов.

Для качественного и количественного изучения локализации белков в клетках используют проционовые красители, флюорескамин, а липидов — 3,4-бензпирен, фосфин ЗР и др. Тетрациклин и его производные применяют для люминесцентно-микроскопического изучения костной ткани и некоторых изменений в клетках при малигнизации.

Л. м. в сочетании с прямым флюорохромированием фиксированных препаратов используют при бактериоскопической диагностике для обнаружения кислотоустойчивых микобактерий, гонококков, возбудителей дифтерии, возбудителей малярии в мазках крови и др.

Преимущества этого метода заключаются в его более высокой чувствительности по сравнению с обычными методами окраски (напр., окраски по Цилю—Нельсену). Флюорохромирование применяют также в санитарно-бактериол. исследованиях для обнаружения и подсчета микроорганизмов в воде и почве.

Одним из методов люминесцентномикроскопической диагностики является обнаружение микроколоний на мембранных фильтрах после кратковременного подращивания и флюорохромирования.

Еще в 1940 г. Штруггер предложил использовать акридиновый оранжевый для дифференциации живых и мертвых бактерий, однако последующие исследования показали недостаточную надежность этого метода.

В связи с этим для определения жизнеспособности клеток (в частности, при воздействии на них цитотоксических факторов) используют диацетат флюоресцеина или его сочетание с бромистым этидием.

Нелюминесцирующий эфир флюоресцеина расщепляется эстеразами жизнеспособной клетки с освобождением ярко люминесцирующего зеленым флюоресцеина, а бромистый этидий обусловливает красную люминесценцию только мертвых клеток.

Для изучения физ.-хим. состояния мембран клеток используют так наз. гидрофобные флюоресцентные пробы.

С этой целью клетки обрабатывают веществами, которые не люминесцируют в р-ре, но начинают люминесцировать, связываясь с гидрофобными участками мембран клетки, причем интенсивность и цвет люминесценции зависят от хим. строения и физ.-хим.

состояния структур, с к-рыми связаны эти флюорохромы. Одним из наиболее распространенных веществ такого рода является 1-анилино-S-нафталин-сульфоновая к-та (1,8 АНС).

Методом изучения физ.-хим. состояния макромолекул, с к-рыми связаны флюорохромы в различных клеточных структурах, является также поляризационная люминесцентная микроскопия.

Рис. 1—3. Микрофотографии прижизненно флюорохромированных перитонеальных макрофагов в клеточной культуре (обработка акридиновым оранжевым): рис. 1— нефагоцитирующий макрофаг (ядро — зеленое, цитоплазматические гранулы-лизосомы — красные); рис. 2 — фагоцитирующий макрофаг, внутри которого видны фагоцитированные бактерии, светящиеся красным цветом, ядро — зеленое; рис. 3 — фагоцитирующий макрофаг, внутри которого видны фагоцитированные бактерии, светящиеся красным цветом, ядро и ядрышки — зеленые (микрофотография произведена с экрана электронно-оптического усилителя яркости, экспозиция 0,5 сек.). Рис. 4 — 8. Микрофотографии клеточных культур, зараженных вирусами (обработка акридиновым оранжевым): рис. 4 — культура клеток ВПК-21, инфицированная вирусом крымской геморрагической лихорадки (РНК-содержащие цитоплазматические включения светятся красным цветом); рис. 5 — та же культура после обработки рибонуклеазой (красное свечение РНК-содержащих структур клетки исчезло, содержимое вирусных включений устойчиво к действию фермента); рис. 6 — красное свечение РНК-содержащих включений в культуральных клетках эмбрионов сирийского хомячка, зараженных арбовирусом Дхори; рис. 7 — слабое свечение внутриядерных включений в культуральных клетках эмбрионов сирийского хомячка, зараженных вирусом Дхори; рис. 8 — цитопатические изменения в первичной культуре клеток почек зеленой мартышки, зараженной вирусом энцефаломиокардита. Рис. 9. Микрофотография культуры клеток амниона человека, зараженных вирусом кори; зоны локализации вирусного антигена в структурах симпласта светятся зеленым цветом; непрямой метод флюоресцирующих антител, меченных ФИТЦ.

Существенное преимущество Л. м. перед другими методами микроскопического исследования — возможность прижизненного (цветн. рис. 1—3) и суправитального флюорохромирования с использованием очень низких малотоксичных концентраций флюорохромов. При этом различные флюорохромы могут связываться с разными структурами клеток. Акридиновый оранжевый, напр.

, накапливается в лизосомах живой клетки, и они начинают люминесцировать красным светом. Такую же люминесценцию приобретают фагоцитированные бактерии внутри фагосом.

Тетрациклин связывается с митохондриями клеток или их аналогами у бактерий и люминесцирует желто-зеленым светом, причем интенсивность люминесценции (количество связавшегося тетрациклина) зависит от чувствительности бактерий к этому антибиотику.

Возможно также флюорохромирование клеток и тканей in situ для изучения их с помощью контактной Л. м.

Люминесцентная микроскопия вирусов применяется при лаб. диагностике вирусных заболеваний для выявления вирусного антигена в клетках, изучения хим.

состава внутриклеточных вирусных включений, определения относительной концентрации вирусных антигенов и нуклеиновых к-т по интенсивности специфической флюоресценции и т. д.

В зависимости от целей исследования в качестве объектов используют мазки, отпечатки, соскобы тканей или препараты клеточных культур.

В современной вирусологии наиболее распространены два метода Л. м.: 1) идентификация и дифференциация нуклеиновых к-т вирусов в инфицированных клетках и очищенных вирусных суспензиях с помощью флюорохромов аминоакридинов; 2) выявление вирусных антигенов с помощью иммунофлюоресценции.

Из аминоакридинов чаще применяют акридиновый оранжевый, придающий молекулам двуспиральных нуклеиновых к-т (как правило, ДНК) зеленую, а односпиральных нуклеиновых к-т (как правило, РНК) рубиново-красную флюоресценцию (цветн.

рис. 4—8). Метод применим как на нативных препаратах, так и после фиксации в ацетоне, жидкости Карнуа и др. Результаты окраски в значительной мере зависят от концентрации (обычно 1 : 10 000 — 1 : 100 000) и pH флюорохрома.

Метод иммунофлюоресценции используют для идентификации вирусов в клетках, изучения динамики накопления вирусного антигена в клетке, определения внутриклеточной локализации скоплений вируса, выяснения природы вирусных включений, изучения антигенной структуры вирусов, дифференциации близкородственных вирусов, титрования вирусов в клеточных культурах, выявления антигенов опухолеродных вирусов в тканях и клетках, изучения патогенеза вирусных заболеваний, контроля вирусной контаминации клеточных культур, исследования хрон, вирусных инфекций и т. д. Метод применим как в прямой, так и в непрямой модификациях. Для правильной интерпретации результатов исследования важно учитывать концентрацию и чистоту применяемых антител и их конъюгатов с флюорохромами, сроки и температуру фиксации препаратов (обычно ацетоном) и обработки их антителами. Наиболее часто для метки антител используют изотиоцианат флюоресцеина (ФИТЦ), дающий характерное зеленое свечение (цветн. рис. 9), и сульфохлорид лиссамин-родамина В 200, светящийся оранжево-красным светом.

Метод иммунофлюоресценции допускает также выявление в клетках и тканях антител к вирусным антигенам.

Л. м. вирусов применяют для диагностики таких инфекций, как оспа, герпес, эпидемический паротит и др. Особое значение имеет Л. м. в экспресс-диагностике респираторных вирусных инфекций, когда отпечатки со слизистой оболочки носа больных (риноцитограммы) обрабатывают с помощью названных выше методов с целью выявления антигенов или определения типа нуклеиновых к-т. Т. о.

проводят дифференциальную диагностику между инфекциями, вызванными вирусами гриппа А2 или В, парагриппа, аденовирусами, респираторно-синцитиальным вирусом или сочетаниями названных вирусов. Возможна также диагностика путем Л. м. клеточных культур, инфицированных материалом больных. Окончательный диагноз во всех случаях ставят по сочетанию данных Л. м.

с результатами вирусол, и серол, исследований больных.

Люминесцентная микроскопия органов и тканей — один из современных методов исследования, применяемый в нормальной и патол, гистологии. Основными преимуществами Л. м. являются высокая чувствительность (чувствительнее обычных цито- и гистохим, методов не менее чем в 1000 раз), легкость количественного измерения содержания различных хим.

компонентов ткани и клеток, доступность аппаратуры. Для Л. м. органов и тканей используют первичную и вторичную люминесценцию.

Первичной люминесценцией (люминесцентное свечение, возникающее без предварительной обработки препаратов) с достаточной интенсивностью обладают некоторые вещества, входящие в состав клеток и тканей: витамины (витамин В2 дает желто-зеленую люминесценцию, витамин B1 в щелочном р-ре переходит в трихром и дает синюю люминесценцию, каротин люминесцирует желто-зеленым светом, витамин А при облучении в УФ-спектре имеет сине-белую люминесценцию), гормоны (эстрогены, адреналин дают желто-зеленую люминесценцию, серотонин, норадреналин при обработке препаратов парами концентрированной серной к-ты имеют желтую люминесценцию), липопигменты (липофусцин дает красную люминесценцию, цероид— голубоватую) и др. Принцип первичной люминесценции положен в основу цитохим, количественного изучения содержания различных компонентов клеток (в первую очередь, белков) с помощью метода люминесценции в УФ-лучах.

Вторичная люминесценция органов и тканей достигается с помощью обработки препаратов флюорохромами (см.). Акридиновый оранжевый применяют для диагностики рака в цитол, и гистол, препаратах. Этот же краситель используют для определения ранних сроков инфаркта миокарда (участки ишемии имеют зелено-желтую люминесценцию).

Корифосфин и акридиновый оранжевый применяют для выявления кислых мукополисахаридов. Такие флюорохромы, как кофеин 5 и родамин, могут быть использованы для определения гликогена. Фосфин 3Р применяют для определения липидов, с этой же целью используют р-р 3,4-бензпирена в насыщенном р-ре кофеина (липиды имеют голубовато-белую люминесценцию). Тиофлавин Т.

S. окрашивает амилоид (зеленая люминесценция), поэтому его широко применяют для диагностики амилоидоза внутренних органов. С помощью р-ра морина в спирте определяют кальций в тканях (зеленая люминесценция). При обработке препаратов р-ром солохрома черного удается выявить алюминий (желто-оранжевая люминесценция).

С помощью родамина 6Ж в легких определяют сурфактант (оранжевая люминесценция).

С помощью метода иммунофлюоресценции можно выявить гормоны, антигены и антитела (цветн. рис. 9), различные продукты обмена, идентифицировать гистогенетически незрелые опухоли, различные инф. заболевания и т.д. Развитие иммунохимии еще больше расширило возможности этого метода. Появилась возможность определять с помощью искусственных гаптенов небелковые вещества в тканях и клетках.

См. также Микроскопические методы исследования.

Библиография: Барский И. Я., Поляков Н. И. и Якубенас В. А. В. Контактная микроскопия, М., 1976, библиогр.; Ершов Ф. И. Люминесцентное микроскопическое выявление ранних изменений нуклеиновых кислот и липидов в инфицированных клетках, Вопр, вирусол., .No 1, с. 3, 1964, библиогр.; 3еленин А.В.

Взаимодействие аминопроизводных акридина с клеткой, М., 1971, библиогр.; 3 у б-жицкий Ю. Н. Метод люминесцентной микроскопии, Л., 1964, библиогр.; К а р-мышеваВ.Я. Применение метода флюоресцирующих антител в вирусологии, М., 1979; M e й с e л ь М. Н. Флуоресцентная микроскопия и цитохимия в общей микробиологии, в кн.: Усп.

микробиол., под ред. А. А. Имшенецкого, т. 7, с. 3, М., 1971; Михайлов И. Ф. и Дьяков С. И. Люминесцентная микроскопия, М., 1961, библиогр.; Струков А. И. и Кондратьев В. С. Люминесцентно-микроскопический метод в патологоанатомической практике, Арх. патол., т. 28, № 8, с. 77, 1966, библиогр.; Фридман И. А. и Кустаров Н. П.

Люми-несцентные цитологические исследования в акушерско-гинекологической практике, Л., 1974, библиогр.; Automation in microbiology and immunology, ed. by C.-G. Hed£n a. T. Illeni, N. Y., 1975; The automation of uterine cancer cytologv, ed. by G. L. Wied a.o., Chicago, 1976; С a s-persson T. a.o.

DNA-binding fluoro-chromes for-the study of the organization of the metaphase nucleus, Exp. Cell Res., v. 58, p. 141, 1969; Fluorescence techniques in cell biology, ed. by A. A. Thaer a. M. Ser-netz, N.Y., 1973; Vaillier J. a. Vaillier D.

Characterization of cell subpopulations of the thymus by a hydro-phobic fluorescent probe, l-anilino-8-naph-thalene sulphonate, Clin. exp. Immunol v. 30, p. 283, 1977.

М. Я. Корн; В. А. Варшавский (пат. ан.), Я. E. Хесин (вир.).

Источник: https://xn--90aw5c.xn--c1avg/index.php/%D0%9B%D0%AE%D0%9C%D0%98%D0%9D%D0%95%D0%A1%D0%A6%D0%95%D0%9D%D0%A2%D0%9D%D0%90%D0%AF_%D0%9C%D0%98%D0%9A%D0%A0%D0%9E%D0%A1%D0%9A%D0%9E%D0%9F%D0%98%D0%AF

Введение в клеточную биологию :: Теория и практика :: Методы исследования клетки

Микроскопия в коротковолновой части видимого света.

  • Световой микроскоп и изображение пыльцевых зерен, сделанное с его помощью
  • Люминесцентный микроскоп и изображения, сделанные с его помощью: прорастание пыльцевой трубки сквозь стенку пыльника и семязачаток.
  • Конфокальный микроскоп и изображения, сделанные с его помощью: растрескивание пыльника, сосуды ксилемы, хлоропласты в клетках рыльца.
  • Одним из главных методов цитологии на сегодняшний день остается микроскопия, предназначенная для изучения структуры клетки, она широко используется в фундаментальных и прикладных исследованиях. Изобретение микроскопа связывают с именами Галилео Галилея (итал.) и братьев Янсен (гол.) в 1609–1611 гг. Термин «микроскоп» был предложен Фабер (нем.) в 1625 г. На настоящий момент существует два основных вида микроскопии – световая и электронная. Различия между ними состоят в принципе рассмотрения объекта. В первом случае объект рассматривают в потоке видимой части электромагнитного излучения (длина волны = 400–750 нм), во втором случае – в потоке электронов. Эти два метода имеют разную разрешающую способность. Разрешающая способность или предел разрешения – это минимальное расстояние между двумя точками, при котором они видны раздельно. Предел разрешения микроскопа задается длиной волны потока излучения, в котором изучается объект. Поэтому излучение данной длины волны может быть использовано для исследования только таких структур, минимальные размеры которых сопоставимы с длиной волны самого излучения. Предел разрешающей способности световой микроскопии был достигнут конструкторами микроскопов еще в конце 19 века, и составил 0,2 мкм. Это значит, что два объекта, если они разделены расстоянием менее 0,2 мкм, будут выглядеть как одно целое, даже если мы будем сильно увеличивать изображение, например, проецируя его на экран. Поэтому, с помощью светового микроскопа не удается рассмотреть две центриоли в клеточном центре, они выглядят как одна точка (надо сказать, что в современных микроскопах, производимых серийно, максимальная разрешающая способность не реализуется). В связи с ограничением разрешающей способности светового микроскопа он может быть использован для изучения ограниченного числа внутриклеточных структур, включая: ядро, пластиды, крупные вакуоли, оболочку растительной клетки. Мельчайшими объектами, четко различимыми в световом микроскопе являются бактерии и митохондрии, размеры которых составляют около 500 нм (0,5 мкм), более мелкие объекты видны нечетко, повышение точности обработки линз не может преодолеть это ограничение, которое задано волновой природой света. Разрешающая способность зависит не только от длины волны источника освещения, но и от коэффициента преломления среды, через которую происходит наблюдение объекта, а также от угла наклона, под которым лучи освещения входят в объектив. Стандартный набор объективов микроскопа составляют: объективы малого увеличения ( х8) с апертурой А=0,2 и объективы большого увеличения (х20) с А= 0,40 и – (х40) с А= 0,65. Эти объективы называют «сухими», так как рассмотрение объекта с их помощью происходит через воздушную среду (коэффициент преломления n=1). Но большинство микроскопов оснащены, кроме этого, специальными иммерсионными объективами, для которых необходима специальная иммерсионная среда (n=1). Такой средой может быть вода, объектив х40 ВИ имеет апертуру 0,75. Наиболее распространена масляная иммерсия (n=1,51), при х90 значение апертуры объектива А=1,25. В случае использования иммерсии улучшается разрешающая способность светового микроскопа. Однако, у объективов с высокой разрешающей способностью имеются недостатки: небольшая глубина резкости и невысокая контрастность. Самым распространенным методом световой микроскопии является метод светлого поля, при котором световые лучи осветителя проходят через объект и попадают в объектив. Таким способом изучают клетки фиксированные и окрашенные. Открытие основных клеточных структур связано с разработкой и применением набора красителей, которые избирательно окрашивают компоненты клетки и обеспечивают контраст для их наблюдения. Имеется большое разнообразие красителей. Некоторые из них извлекаются из растений и животных, до сих пор не существует их синтетических аналогов. Например, широко используемый гематоксилин – экстракт тропического кампешевого дерева, кармин – пигмент жирового тела некоторых видов тлей. Все это так называемые ядерные красители, окрашивающие структуры, содержащие нуклеиновые кислоты. Применение неядерного красителя –азотнокислого серебра, позволило Камилло Гольджи в 1898 г. наблюдать и описать то, что позднее было названо аппаратом Гольджи. Окрашивание живой клетки возможно лишь в редких случаях, поэтому для их изучения используют другие методы. В отличие от метода светлого поля при наблюдении объектов методом темного поля лучи осветителя не попадают в объектив и изображение создается только рассеянными лучами, идущими от объекта. При этом на темном фоне можно увидеть светящиеся частицы, которые по своим размерам меньше, чем разрешающая способность объектива, хотя размеры и форму частиц определить трудно. Темнопольная микроскопия в проходящем свете используется для изучения прозрачных объектов обычно невидимых в светлом поле и, особенно, для рассмотрения живых клеток. Совершенно по-разному на темном фоне выглядят живые и погибающие клетки. Протопласт погибающих клеток светится ярче, объяснения этому факту нет. Изобретен этот метод Зигмонди (австр.) в 1912 г. В световой микроскоп можно различать объекты, изменяющие амплитуду лучей освещения, однако живые клетки прозрачны для видимого света и лучи, проходя через клетку, практически не меняют амплитуды. Человеческий глаз не способен воспринимать смещение фазы лучей без изменения амплитуды. Поэтому специально для изучения живых клеток используются методы фазово-контрастной (изобретен Зернике (голл.) в 1934 г.) и интерференционной микроскопии (изобретен Лебедевым в 1932 г.). В таких системах прохождение света через живую клетку сопровождается изменением фазы световой волны. Свет задерживается, проходя через толстые участки клетки, например, через ядро. Возникает рекомбинация двух наборов волн, которые создают изображение клеточных структур. Для изучения объектов, обладающих двойным лучепреломлением (крахмальные зерна, растительные волокна, кристаллы) используют поляризационную микроскопию, основы которой заложил Эбнер в 1882 г. В этом методе используют специальное устройство поляризатор, который преобразует разнонаправленные волны света и они приобретают одно направление. При флуоресцентной микроскопии объект рассматривают в свете, излучаемом им самим. Первый люминесцентный микроскоп сконструировали Келлер и Зиндентокф в 1908 г. В основе этого метода лежит способность ряда веществ, при освещении коротковолновыми лучами (фиолетовыми или ультрафиолетовыми), светиться. Часто люминесцентная микроскопия используется для выявления специфических белков, антител, впервые использовал флуорохромы для связывания с антителами Кунс, и эта реакция получила его имя. В цитоэмбриологических исследованиях этот метод используют для изучения структур, содержащих углевод каллозу. Для этого метода используют специальную оптическую систему с ртутной лампой, связанную со световым микроскопом. В последнее время возможности световой микроскопии существенно увеличились благодаря использованию чувствительных видеосистем. Изображение, созданное световым микроскопом, подвергается обработке в видеокамере. Оно очищается от «шумов», преобразуется в цифровые сигналы и направляется в компьютер, где подвергается дополнительной обработке для извлечения скрытой информации. Компьютерная интерференционная микроскопия позволяет достичь сильного контраста и анализировать прозрачные объекты и живые клетки.
  • Длительные непрерывные усилия по улучшению методов исследования принесли желаемые результаты в конце второй мировой войны. Именно тогда, благодаря удивительному стечению обстоятельств, почти в одно и то же время, ученые обогатились рядом новых мощных инструментов и методов исследования. В морфологии таким инструментом стал электронный микроскоп. Созданный еще в 30-е г. 20 века, он обладал достаточной разрешающей способностью, позволяющей проникнуть в клетку, вплоть до структур размером в нанометр. Вместе с тем, электронный пучок имел слабую проникающую способность, и это требовало приготовления очень тонких образцов материала и высокого вакуума. Такие жесткие требования создавали серьезные трудности, но в удивительно короткий срок удалось разработать методы для подготовки образцов тканей и сконструировать приборы для получения из них тонких срезов. Качество объектов неуклонно повышалось и к началу 60-ых годов были описаны многие из ранее неизвестных клеточных структур. Итак, разрешающая способность электронного микроскопа намного выше, чем светового. Теоретически при напряжении 100000 В его разрешение составляет 0,002 нм, но за счет коррекции электронных линз оно уменьшается и в реальности составляет у современных электронных микроскопов 0,1 нм. Значительные трудности наблюдения биологических объектов еще более снижают нормальное разрешение, оно не превышает 2 нм. Тем не менее, это в 100 раз больше, чем у светового микроскопа, поэтому электронную микроскопию называют ультрамикроскопической. Общая схема просвечивающего электронного микроскопа напоминает схему светового. Он существенно больше светового и как бы перевернут. В качестве источника излучения у электронного микроскопа служит нить катода, испускающая электроны (электронная пушка). Электроны испускаются с вершины цилиндрической колонны высотой около двух метров. Чтобы не было препятствий для движения электронов, происходит это в вакууме, разгоняются электроны анодом и проникают через крошечное отверстие в нижнюю часть колонны узким электронным лучом. Электронный луч фокусируется кольцевыми магнитами, расположенными вдоль колонны, они действуют подобно стеклянным линзам светового микроскопа. Образец помещается на пути электронного пучка. В момент его прохождения через образец часть электронов рассеивается в соответствии с плотностью вещества, остаток электронов фокусируется, образуя изображение на фотопластинке или на экране. Первый электронный микроскоп был создан Сименсом в 1939 г. Он позволил увидеть в клетке множество удивительных структур. Но для этого пришлось изобрести совершенно новые методы приготовления препаратов, которые стали применять с 1952 г. Фиксация клеток при этом проводится глутаральдегидом, ковалентно связывающим белки, а затем осмиевой кислотой, стабилизирующей белковые и липидные слои. Образец обезвоживают и пропитывают смолами, образующими после полимеризации твердый блок. Срезы для электронной микроскопии должны быть примерно 1:200 часть толщины одной клетки. Для изготовления таких срезов был создан ультрамикротом (1953) , в котором используются стеклянные или алмазные ножи. Полученные срезы помещают на специальную медную сеточку. Изображение в электронном микроскопе зависит от рассеивания электронов, которое определяется атомным числом вещества. Биологические объекты состоят главным образом из углерода, кислорода и водорода, которые обладают низким атомным числом. Для усиления контраста их импрегнируют тяжелыми металлами, такими как осмий, уран, свинец. Тонкие срезы при просвечивающей электронной микроскопии не позволяют судить о трехмерной структуре клетки, компенсировать этот недостаток можно серией срезов, по которой проводится реконструкция клетки. Это долгий процесс. Существует и прямой метод изучения трехмерного строения биологических объектов – сканирующая электронная микроскопия – она была создана в 1965 г. В этом случае для получения изображения используют электроны, рассеиваемые или излучаемые поверхностью объекта, который должен быть зафиксирован, высушен и покрыт пленкой тяжелого металла. Этот метод применим только для изучения поверхностей и его разрешение невелико – около 10 нм.
  • Просвечивающий, зондовый и растровый электронные микроскопы. Электронмикроскопическое изображение поверхности пыльника и пыльцевого зерна
  • Классический световой микроскоп обладает низкой разрешающей способностью, что не позволяет изучать детали строения клетки размером менее 0,25 мкм. Второй этап изучения клетки относится к тому времени, когда микроскописты трудились над усовершенствованием своих приборов. В это же время – конец 18 в. – французский ученый Антуан де Лавуазье и англичанин Джозеф Пристли создают новую науку – химию. В отличие от морфологии, которая развивается от сложного к простому, химия продвигается от простого к сложному. Начиналась химия с идентификации элементов, атомов и затем продвигалась по пути изучения некоторых их наиболее простых комбинаций – молекул. Пересечь границу между неорганической и органической химией и позволить проникнуть в живой мир химии помог, впервые проведенный в 1828 г. Немецким ученым Фридрихом Велером, синтез биологической молекулы мочевины. Это стало началом применения химического подхода к изучению клетки. В последующие сто лет были открыты, очищены, структурно изучены и получены синтетическим путем аминокислоты, сахара, жиры, пурины, пиримидины и др. небольшие молекулы. Ученым удалось составить представление о метаболизме этих веществ в организме и путях образования из них основных биологических молекул: белков, полисахаридов и нуклеиновых кислот. Но опять возникли труднопреодолимые препятствия на пути прогресса: перед сложностями структурной комплексности этих крупных молекул классическая химия оказалась бессильна. В течение длительного времени клетки изучали в основном путем наблюдения за ними. Но по мере развития экспериментального метода в естественных науках к нему начали прибегать и при исследовании живых организмов. Это облегчалось мощными биомедицинскими исследованиями проводимыми во второй половине 19 в. В начале 20 в. американец Росс Гаррисон и француз Алексис Каррель установили, что клетки животных можно культивировать в пробирке наподобие того как это делают с одноклеточными организмами. Тем самым они продемонстрировали способность клеток к независимой жизни и создали метод культивирования, который сейчас является одним из самых актуальных. Но все эти методы, по сути революционные, по-прежнему, были непрямыми, клетка оставалась закрытым черным ящиком. Сохранялась неизведанной огромная пропасть между наименьшей различимой в световом микроскопе частицей и наиболее крупной молекулой, доступной химическому исследованию. В этом неизведанном пространстве были скрыты важные понятия и концепции, неизвестными оставались функции, описанных клеточных структур, их связь с известными биомолекулами – без всего этого жизнь клетки оставалась неразгаданной. В свою очередь биохимия также обогатилась целым рядом принципиально новых приборов и методов. Особый интерес представляла хроматография, основанная на очень простом феномене – образовании каемки или ореола вокруг пятна (то, что мы видим, когда пытаемся вывести пятно специальным раствором). В основе этого явления лежат различия в скорости движения разных красок в потоке растекающейся жидкости. В начале 20 века русский физиолог и биохимик Михаил Семенович Цвет первым использовал этот феномен. Пропуская экстракт из листьев через вертикальную трубку, заполненную адсорбирующим порошком, он сумел разделить основные пигменты листьев – зеленый и оранжевый – и получить их в виде отдельных окрашенных полос или колец вдоль трубки. Свой метод он назвал хроматография (греч. khroma – цвет, graphein – записывать). Цвет умер относительно молодым и потенциальные возможности его метода оставались неиспользованными до начала 40-х гг. Сейчас существует множество вариантов хроматографии – применимой ко всем веществам, которые могут быть идентифицированы химически. Близким к хроматографии является электрофорез в геле, при котором не поток растворителя, а электродвижущая сила способствует передвижению и разделению электрически заряженных компонентов. Эти методы произвели переворот в области химического анализа. Теперь на следовых количествах смеси практически любого состава можно провести анализ. Вторым методом, радикально изменившем химическое исследование живых клеток, явился метод изотопного мечения. Изотопы – это разновидности одного и того же химического элемента, отличающиеся по атомной массе. Некоторые изотопы существуют в природе, многие могут быть получены искусственным путем в процессе ядерных реакций. Изотопы используются для специфического мечения определенных молекул, такие молекулы можно отличить от им родственных без нарушения общей структуры. Этот метод используется при анализе биосинтетических процессов, которые не могли быть изучены другим способом. Например, с получением меченых аминокислот появилась возможность изучать их соединение в белки в живом организме или в экспериментальных условиях, даже, несмотря на бесконечно малое количество вновь образованного белка, благодаря его радиоактивности. Широкое распространение этот метод получил с созданием атомных реакторов и производством широкого спектра радиоизотопов. Без метода меченых атомов достижения клеточной и молекулярной биологии были бы невозможны. Таким образом, и морфология, и биохимия, обогащенные новыми методами постоянно совершенствовались, разрыв между их знанием становился все меньше и исчез совсем, когда появилась возможность разделить клетку на части таким образом, чтобы каждую часть можно было бы независимо изучить. Методы, применяемые для такого фракционирования, основываются главным образом на центрифугировании. Этот метод использует различия в физических свойствах, в частности величине и плотности, тех или иных составных частей клетки для отделения их друг от друга. Это позволило изучить большую часть клетки и объединить морфологическое и биохимическое знание. Однако одна часть клетки – ее важнейшая центральная часть, ядро – оставалась в значительной степени недоступной, пока не произошло еще одно событие. А началось оно с попытки проанализировать с помощью генетики особенности некоторых простых вирусов, инфицирующих бактерии и названные бактериофагами или пожирателями бактерий. Это исследование оказалось верным подходом к решению проблемы генетической организации, которая даже у простейших неклеточных организмов была необыкновенно сложной. Длительное время новая дисциплина известная сегодня как молекулярная биология, ограничивалась изучением вирусов и бактерий, но затем она буквально ворвалась в эукариотическую клетку, позволив изучать регуляцию жизнедеятельности клетки. Для изучения молекулярных основ организации клетки необходим детальный биохимический анализ. Для него необходимо значительное количество клеток определенного типа, поэтому невозможно использовать кусочки ткани, ведь они содержат клетки разных типов. На первом этапе работы кусочки ткани превращают в суспензию. Это можно сделать, разрушив межклеточное вещество и межклеточные связи. Для этого ткань обрабатывают протеолитическими ферментами, разрушающими белки (трипсин, коллагеназа). В соединении клеток, их слипании большую роль играет кальций, поэтому используют и вещества хелатирующие, которые связывают кальций. Затем ткани подвергают мягкому механическому разрушению и разделяют на отдельные клетки. Второй этап – разделение суспензии на отдельные фракции. Для этого используют центрифугирование, с помощью которого крупные клетки отделяют от мелких, а легкие – от тяжелых или используют антитела, и способность клеток с разной прочностью прикрепляться к стеклу или пластмассе. Третий этап – введение выделенных клеток в культуру. Первые опыты были проведены в 1907 г. Гаррисоном, он культивировал спинной мозг амфибий в сгустке плазмы. Среды для культивирования имеют довольно сложный состав. Стандартная среда была разработана в начале 70-х, она содержит набор из 13 аминокислот, 8 витаминов, минеральные соли. Кроме того, в среду могут включаться глюкоза, пенициллин, стрептомицин, сыворотка лошади или теленка. Как показали Хайфлик и Мурхед в 1961 г., большинство клеток млекопитающих погибает в культуре после определенного числа делений. Клетки кожи человека делятся в культуре 50-100 раз. Однако в культуре иногда появляются мутантные клетки, которые могут размножаться бесконечно, образуя клеточную линию. В 1952 г. была выделена перевиваемая клеточная линия из раковой опухоли шейки матки, известная как линия HeLa. Такие линии хранят при температуре -70 С, после размораживания они сохраняют способность делиться. Метод культивирования растительных клеток был разработан к 1964 г. Пользуясь им, удалось вырастить in vitro целое растение моркови из клеток корня.

Источник: https://media.ls.urfu.ru/203/592/1237

Микроскопия проходящего света

Микроскопия в коротковолновой части видимого света.

ОПТИЧЕСКАЯ МИКРОСКОПИЯ

Современные оптические микроскопы делятся на 2 класса по методу формирования изображения – классические (проходящего света) и конфокальные, на 2 типа по взаимному расположению препарата и объектива – прямые и инвертированные, а также по уровню сложности – обучающие, лабораторные и исследовательские.

Микроскопия проходящего света

Микроскоп проходящего света это сложная оптико-механическая конструкция, имеющая осветительную, воспроизводящую и визуализирующую системы.

Осветительная часть микроскопа состоит из источника света, создающего световой поток; коллектора и конденсора. Задачей осветительной части является создание светового потока, который должен пройти через препарат и не нарушить его оптических свойств (поглощение, отражение, цветопередачу) и геометрических параметров (контура, размеров).

Воспроизводящая часть – объектив, который создает увеличенное изображение препарата с максимальной достоверностью по форме, цвету и разрешению элементов.

Визуализирующая часть микроскопа может состоять: из окуляра (оптического элемента проектирующего изображение препарата), системы «окуляр — оптовар» (оптовар — система дополнительного увеличения, расположенная между объективом и окуляром), адаптера (дополнительный элемент, для соединения фото-видеокамеры с микроскопом и системы «оптовар — адаптер».

Предел разрешения светового микроскопа зависит от длины световой волны, которая для видимого света лежит в диапазоне 0,38 (фиолетовый цвет) — 0,76 мкм (красный).

Отсюда следует, что самыми мелкими объектами, которые можно наблюдать в световой микроскоп, являются бактерии и митохондрии (0,5 мкм).

Повышение точности обработки линз не может преодолеть это ограничение, которое задано волновой природой света.

Очень важная характеристика микроскопа — предельное разрешение, позволяющее наблюдать два объекта в отдельности. Оно зависит от волновой природы света и апертуры использованной системы линз. Теоретически возможный предел составляет 0,2 мкм (при длине волны 0,4 мкм и апертуре 1,4). Это значит, что два объекта, если они разделены расстоянием менее 0,2 мкм, будут выглядеть, как одно целое.

Существующие модели классических микроскопов проходящего света (плоского поля) можно комплектовать в зависимости от методов исследования. У естествоиспытателя есть выбор между прямым или инвертированным микроскопом.

Отличаются они друг от друга расположением и рабочим расстоянием объектива до объекта исследования.

В прямых микроскопах объектив располагается сверху предметного столика, а рабочее расстояние составляет от 0,1 мм до 20 мм в зависимости от увеличения объектива, у инвертированных – снизу предметного столика, и с большим рабочим расстоянием от 30 до 70 мм.

Рис.1. Современный исследовательский биологический микроскоп (фирмы Leica).

Основные характеристики: галогеновый осветитель100Вт, моторизованный револьвер на 8 объективов, моторизованный конденсор, моторизованный столик, моторизованная наводка на резкость, встроенный активный ж/к экран для управления микроскопом. Может быть использован: для работы методом светлого поля, темного поля, фазового контраста, интерференционного контраста и флуоресценции.

На большинстве микроскопов последнего поколения (исследовательские) можно реализовать следующие методы исследования в зависимости от комплектации:

1. Светлое поле – используется для изучения окрашенных и высококонтрастных препаратов. В поле зрения на светлом фоне наблюдают контрастное однотонное или естественное цветное изображение объекта.

2. Тёмное поле и фазовый контраст – для изучения неокрашенных нативных препаратов. Изучение препаратов в темном поле осуществляется с помощью особого темнопольного конденсора. Такой конденсор пропускает от источника света только косые краевые лучи, которые освещают препарат, но не попадают в объектив.

Клетки и их компоненты обладают различной оптической плотностью и по-разному рассеивают попадающие на них лучи. Рассеяние лучей вызывает свечение внутриклеточных структур. Чем плотнее структура, тем ярче она видна на темном фоне.

Фазовый контраст осуществляется с помощью фазово-контрастного устройства, в состав которого входят: специальный конденсор и фазовые объективы. Метод фазового контраста основан на том, что отдельные участки прозрачного препарата отличаются от окружающей среды по показателю преломления.

Свет проходит через внутриклеточные структуры с разной скоростью, что приводит к смещению фаз и изменению яркости отдельных участков.

3. Дифференциальный интерференционный контраст – для чёткой визуализации границ между объектами, различающимися по толщине и/или коэффициенту преломления. В таком микроскопе пучок параллельных световых лучей от осветителя разделяется на две ветви – верхнюю и нижнюю.

Нижняя ветвь проходит через препарат, и фаза ее светового колебания изменяется, а верхняя ветвь минует препарат и остается неизменной. В призмах объектива эти ветви соединяются и интерферируют.

Интерференция представляет собой результат сложения двух волн с одинаковыми периодами, но со смещенными фазами. В результате участки препарата, обладающие разной толщиной или разными показателями преломления, окрашиваются в различные цвета, становятся контрастными и хорошо видимыми.

Следовательно, интерференционная микроскопия позволяет судить о толщине структур и о содержании сухого вещества в клетке.

4. Поляризационный контраст–для выявления объектов, поворачивающих плоскость поляризации. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляризационных фильтра — первый (поляризатор) между пучком света, и объектом, а второй (анализатор) между линзой объектива и глазом.

Через первый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось, которая располагается перпендикулярно первому фильтру, и он не пропускает свет. Получается эффект темного поля. Оба фильтра могут вращаться, изменяя направление пучка света. Если анализатор повернуть на 90° по отношению к поляризатору, то свет проходить через них не будет.

Структуры, содержащие продольно ориентированные молекулы (коллаген, микротрубочки, микрофиламенты), и кристаллические структуры (в клетках Лейдига) при изменении оси вращения проявляются как светящиеся. Способность кристаллов или паракристаллических образований к раздвоению световой волны на обыкновенную и перпендикулярную к ней называется двойным лучепреломлением.

Такой способностью обладают фибриллы поперечнополосатых мышц.

5. Флуоресценция – для получения изображения в микроскопе используется свет определенной длинны волны от ртутно-кварцевых или ксеноновых ламп, который вызывает флюоресценцию (люминесценцию) объекта.

Отдельные молекулы вещества, поглощая фотоны света, переходят в возбужденное состояние и при переходе к исходному (нормальному) состоянию испускают кванты света, большей длинны волны на 20 – 50 нм (закон Стокса). Различают первичную и вторичную флуоресценцию.

Первичная присуща ряду биологически активных веществ, таких, как ароматические аминокислоты, порфирины, хлорофилл, витамины А, В2, В1 , некоторые антибиотики (тетрациклин) и химиотерапевтические вещества (акрихин, риванол). Вторичная возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями – флюорохромами.

Некоторые из этих красителей диффузно распределяются в клетках, другие избирательно связываются с определёнными структурами клеток или даже с определёнными химическими веществами.

Люминесцентный микроскоп снабжен мощным источником освещения с большой поверхностной яркостью, максимум излучения которого находится в коротковолновой области видимого спектра, системой светофильтров, а также интерференционной светоделительной пластинкой, применяемой при возбуждении люминесценции падающим светом.

Для возбуждения флюоресценции при люминесцентной микроскопии обычно используют длинноволновую ультрафиолетовую (область спектра 0,25 – 0,4 мкм), сине-фиолетовую, а иногда и зелёную область спектра. В люминесцентном микроскопе применяют обычно стеклянную оптику и обычные предметные и покровные стёкла, пропускающие излучение в этой части спектра и не обладающие собственной люминесценцией.

Развитие микроскопических методов исследования и цифровых технологий способствовало появлению новых моделей микроскопов.

Предыдущая12345678910111213141516Следующая

Дата добавления: 2016-02-10; просмотров: 1858; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-372.html

МИКРОСКОПИЯ

Микроскопия в коротковолновой части видимого света.

Изучение клеток микроорганизмов, не видимых невооруженным глазом, возможно только при помощи микроскопов (от греч. micros – малый, skopeo – смотрю). Эти приборы позволяют получать изображение исследуемых объектов, увеличенное в сотни раз (световые микроскопы) и в десятки – сотни тысяч раз (электронные микроскопы).

1.1. Устройство светового микроскопа

Цель работы: ознакомить студентов с устройством светового микроскопа, его характеристиками и правилами работы с ним.

Микроскоп называется световым, так как он обеспечивает возможность изучать объект в проходящем свете. Основными элементами современных световых микроскопов являются механическая и оптическая части (рис. 1.1).

Рис. 1.1.

Устройство микроскопа: 1 – основание; 2 – тубусодержатель; 3 – тубус; 4 – окуляр; 5 – револьверная насадка; 6 – объектив; 7 – предметный столик; 8 – клеммы, прижимающие препарат; 9 – конденсор; 10 – кронштейн конденсора; 11 – рукоятка перемещения конденсора; 12 – откидная линза; 13 – зеркало; 14 – макровинт; 15 – микровинт; 16 – коробка с механизмом микрометрической фокусировки; 17 – головка для крепления тубуса и револьверной насадки; 18 – винт для крепления головки

К механической части относятся штатив, тубус, револьверная насадка, коробка микромеханизма, предметный столик, макрометрический и микрометрический винты.

Штатив состоит из двух частей – основания и тубусодержателя (колонки). Основание микроскопа прямоугольной формы, имеет снизу четыре опорные площадки, что обеспечивает устойчивое положение микроскопа на поверхности рабочего стола.

Тубусодержатель соединяется с основанием и может перемещаться в вертикальной плоскости при помощи макро- и микрометрического винтов.

При вращении винтов по часовой стрелке тубусодержатель опускается, при вращении против часовой стрелки – поднимается от препарата.

В верхней части тубусодержателя укреплена головка с гнездом для монокулярной (или бинокулярной) насадки и направляющей для револьверной насадки. Головка крепится винтом.

Тубус – это труба микроскопа, позволяющая поддерживать определенное расстояние между основными оптическими деталями – окуляром и объективом. Вверху в тубус вставляется окуляр. Современные модели микроскопов имеют наклонный тубус.

Револьверная насадка представляет собой вогнутый диск с несколькими гнездами, в которые ввинчиваются 3-4 объектива. Вращая револьверную насадку, можно под отверстие тубуса быстро установить любой объектив в рабочее положение.

Коробка микромеханизма несет с одной стороны направляющую для кронштейна конденсора, а с другой – направляющую для тубусодержателя. Внутри коробки находится механизм фокусировки микроскопа, представляющий собой систему зубчатых колес.

Предметный столик служит для размещения на нем препарата или другого объекта исследования. Столик может быть квадратным или круглым, подвижным или неподвижным. Подвижный столик перемещается в горизонтальной плоскости при помощи двух боковых винтов, что позволяет рассматривать препарат в разных полях зрения.

На неподвижном столике для обследования объекта в разных полях зрения препарат перемещают рукой. Снизу в центре предметного столика имеется отверстие для освещения лучами света, направляемыми от осветителя. На столике имеются две пружинные клеммы, предназначенные для закрепления препарата.

Некоторые системы микроскопов снабжены препаратоводителем, необходимым при исследовании поверхности препарата или при подсчете клеток. Препаратоводитель позволяет производить передвижение препарата в двух взаимноперпендикулярных направлениях.

На препаратоводителе имеется система линеек – нониусов, с помощью которых можно сообщить координаты любой точке исследуемого объекта.

Макрометрический винт (макровинт) служит для предварительной ориентировочной установки изображения рассматриваемого объекта. При вращении макровинта по часовой стрелке тубус микроскопа опускается, при вращении против часовой стрелки – поднимается.

Микрометрический винт (микровинт) используют для точной установки изображения объекта. Микрометрический винт является одной из наиболее легко повреждаемых частей микроскопа, поэтому с ним надо обращаться осторожно: во избежание самопроизвольного опускания тубуса не вращать винт с целью грубой установки изображения. При полном повороте микровинта тубус передвигается на 0,1 мм.

Оптическая часть микроскопа состоит из основных оптических деталей (объектива и окуляра) и вспомогательной осветительной системы (зеркала и конденсора).

Объективы (от лат. objektum – предмет) – наиболее важная, ценная и хрупкая часть микроскопа. Они представляют собой систему линз, заключенных в металлическую оправу, на которой указаны степень увеличения и числовая апертура.

Наружная линза, обращенная плоской стороной к препарату, называется фронтальной. Именно она обеспечивает увеличение.

Остальные линзы называются коррекционными и служат для устранения недостатков оптического изображения, возникающих при рассмотрении исследуемого объекта.

Объективы бывают сухие и иммерсионные, или погружные. Сухим называется объектив, у которого между фронтальной линзой и рассматриваемым объектом находится воздух. Сухие объективы обычно имеют большое фокусное расстояние и увеличение 8х или 40х.

Иммерсионным (погружным) называют объектив, у которого между фронтальной линзой и препаратом находится специальная жидкая среда. Вследствие разницы между показателями преломления стекла (1,52) и воздуха (1,0) часть световых лучей преломляется и не попадает в глаз наблюдателя.

В результате этого изображение получается нечетким, более мелкие структуры остаются невидимыми. Избежать рассеивания светового потока можно путем заполнения пространства между препаратом и фронтальной линзой объектива веществом, показатель преломления которого близок к коэффициенту преломления стекла.

К таким веществам относятся глицерин (1,47), кедровое масло (1,51), касторовое (1,49), льняное (1,49), гвоздичное (1,53), анисовое (1,55) и др. Иммерсионные объективы имеют на оправе обозначения: I – immersion (иммерсия), HI – Homogen immersion (однородная иммерсия), OI – oil immersion и МИ – масляная иммерсия.

В настоящее время в качестве иммерсионной жидкости чаще используют синтетические продукты, соответствующие по оптическим свойствам кедровому маслу.

Объективы различают по их увеличению. Величина увеличения объективов обозначена на их оправе (8х, 40х, 60х, 90х). Кроме того, каждый объектив характеризуется определенной величиной рабочего расстояния. Для иммерсионного объектива это расстояние соответственно составляет 0,12 мм, для сухих объективов с увеличением 8х и 40х – 13,8 и 0,6 мм.

Окуляр (от лат. okularis – глазной) состоит из двух линз – глазной (верхней) и полевой (нижней), заключенных в металлическую оправу. Окуляр служит для увеличения изображения, которое дает объектив. Увеличение окуляра обозначено на его оправе. Существуют окуляры с рабочим увеличением от 4х до 15х.

При длительной работе с микроскопом следует пользоваться бинокулярной насадкой. Корпуса насадки могут раздвигаться в пределах 55-75 мм в зависимости от расстояния между глазами наблюдателя. Бинокулярные насадки часто имеют собственное увеличение (около 1,5х) и коррекционные линзы.

Конденсор (от лат. condenso – уплотняю, сгущаю) состоит из 2-3 короткофокусных линз. Он собирает лучи, идущие от зеркала, и направляет их на объект. При помощи рукоятки, расположенной под предметным столиком, конденсор может перемещаться в вертикальной плоскости, что приводит к увеличению освещенности поля зрения при поднятом конденсоре и уменьшению его при опущенном конденсоре.

Для регулировки интенсивности освещения в конденсоре имеется ирисовая (лепестковая) диафрагма, состоящая из стальных серповидных пластинок. При полностью открытой диафрагме рекомендуется рассматривать окрашенные препараты, при уменьшенном отверстии диафрагмы – неокрашенные.

Под конденсором расположена откидная линза в оправе, используемая при работе с объективами малого увеличения, например, 8х или 9х.

Зеркало имеет две отражающие поверхности – плоскую и вогнутую. Оно закреплено на шарнирах в основании штатива, и его можно легко поворачивать. При искусственном освещении рекомендуется пользоваться вогнутой стороной зеркала, при естественном – плоской.

Осветитель выполняет функцию искусственного источника света. Он состоит из низковольтной лампы накаливания, закрепляющейся на штативе, и понижающего трансформатора. На корпусе трансформатора имеется рукоятка реостата, регулирующего накал лампы, и тумблер для включения осветителя.

Во многих современных микроскопах осветитель вмонтирован в основание.

1.2. Основные характеристики светового микроскопа

Числовая апертура А (от лат. aperture – отверстие) объектива характеризует его светособирательную способность и определяется по формуле

А = n sin 1/2 α,

где n – показатель преломления светового луча, проходящего через предметное стекло в среду между фронтальной линзой объектива и предметным стеклом; α – угол, одна сторона которого совпадает с оптической осью, а другая образована линией, соединяющей точку выхода эффективных лучей из объектива с границей действующего отверстия объектива; 1/2 α- половинный угол входного отверстия объектива.

Важно, чтобы значение величины n было максимальным. Повысить его можно введением в пространство между фронтальной линзой объектива и предметным стеклом вещества с показателем преломления, близким к показателю преломления стекла, как это сказано выше. Не менее важно также, чтобы значение величины sin V а было максимальным.

Предел повышения этого значения зависит от степени кривизны фронтальной линзы иммерсионного объектива и числовой апертуры конденсора. Следует помнить, что повысить величину sin 1/2 α при использовании иммерсионных объективов можно максимальным поднятием конденсора, что определяется его светособирательной функцией.

Если конденсор опущен, то функция, по существу, нарушена.

Числовая апертура и увеличение объектива обозначены на его оправе: 8х0,2; 40×0,65; 90 х1,25.

Увеличительная способность микроскопа (D) определяется произведением увеличения окуляра (K) на увеличение объектива (V):

D = KV.

Теоретически микроскоп может дать увеличение х2000 раз и более. Однако следует различать полезное и бесполезное увеличение микроскопа. Увеличение, которое дает возможность рассматривать объект под предельным углом зрения, и есть полезное увеличение.

Пределы полезного увеличения в обычных световых микроскопах достигают 1400. При превышении границ полезного увеличения возникают дифракция и другие явления, обусловленные волновой природой света.

В частности, у объектива с увеличением 40х и числовой апертурой 0,65 полезное увеличение составляет 325-650. Такое увеличение позволяет различить все структуры, разрешаемые данным объективом.

Поэтому для получения разрешения в пределах полезного при работе с объективом 40х следует брать окуляр 15х. Применение более сильных окуляров не даст возможности выявить более тонкие детали.

Если объектив имеет увеличение 90х (числовая апертура А = 1,25), то полезное увеличение для него равно 1250. Следовательно, и в данном случае не следует брать окуляры с увеличением более 15х, чтобы не выходить за пределы полезного увеличения.

Разрешающая способность микроскопа. Если увеличительная способность микроскопа зависит от объектива и окуляра, то разрешающая способность определяется, в основном, объективом и конденсором. Разрешающую способность рассчитывают по формуле

d = λ / 2А,

где λ – длина волны света, воспринимаемая человеческим глазом (0,4-0,7 мкм, средняя – 0,55 мкм); А – числовая апертура объектива.

Максимальная разрешающая способность светового микроскопа составляет 0,2 мкм. Разрешающая способность микроскопа тем лучше, чем меньше абсолютная величина d.

1.3. Правила работы с микроскопом

1. Микроскоп берут одной рукой за колонку штатива, а другой поддерживают за основание. Брать и поднимать микроскоп за другие детали категорически запрещается.

2. На рабочем столе микроскоп помещают колонкой к себе. Перед началом работы следует осторожно удалить пыль с оптических частей микроскопа мягкой сухой тканью, не касаясь пальцами линз.

3. С помощью револьверной насадки устанавливают нужный объектив. Характерный щелчок фиксатора внутри револьвера свидетельствует о центрированном положении объектива.

Необходимо помнить, что, чем меньше увеличение объектива, тем больше фокусное расстояние.

При работе с объективом 8х расстояние между препаратом и объективом около 9 мм, с объективом 40х оно составляет 0,6 мм, и с объективом 90х – около 0, 15 мм.

4. На предметный столик помещают предметное стекло и закрепляют его клеммами.

5. Тубус микроскопа опускают вниз с помощью макрометрического винта осторожно, наблюдая за объективом сбоку, и приближают к препарату (не касаясь его) на расстояние, меньшее рабочего. Затем, глядя в окуляр, медленным вращением макровинта поднимают тубус до тех пор, пока в поле зрения не появится изображение изучаемого предмета.

6. Вращением микрометрического винта объектив фокусируют таким образом, чтобы изображение предмета было четким.

7.

При работе с иммерсионным объективом на предметное стекло наносят каплю кедрового масла и, глядя сбоку на объектив, макрометрическим винтом осторожно опускают тубус так, чтобы фронтальная линза объектива погрузилась в масло. Затем, глядя в окуляр, медленным движением макровинта поднимают тубус до тех пор, пока не появится изображение. Для точной фокусировки пользуются микрометрическим винтом, который вращают в пределах одного оборота.

Внимание! Запрещается искать изображение препарата с помощью микрометрического винта.

8. Препарат рассматривают в нескольких полях зрения, передвигая предметный столик при помощи боковых винтов, или перемещают его рукой на предметном столике. Находят наиболее подходящее поле зрения на участке препарата, на котором микроорганизмы видны отчетливо, в достаточном для просмотра количестве, и зарисовывают микроскопическую картину.

9. При смене объективов следует регулировать интенсивность освещения рассматриваемого объекта. Желаемую степень освещения получают, опуская или поднимая конденсор.

10. По окончании работы поднимают тубус, снимают препарат с предметного столика, удаляют масло с фронтальной линзы иммерсионного объектива фильтровальной бумагой, смоченной бензином, устанавливают при помощи револьверной насадки объектив с увеличением 8х, кладут на предметный столик кусочек чистой марли и опускают тубус.

1.4. Микроскопия в темном поле

Микроскопия в темном поле позволяет увеличить разрешающую способность объектива примерно в 10 раз и рассмотреть объекты, размеры которых находятся за пределами обычного микроскопа. Темнопольная микроскопия основана на освещении объекта косыми лучами света, которые не попадают в объектив и остаются невидимыми для глаза (явление Тиндаля).

Поэтому поле зрения выглядит совершенно черным. Если препарат содержит какие-либо частицы, например, микроорганизмы, то косые лучи, направленные под определенным углом, вследствие дифракции отражаются от их поверхности и настолько отклоняются от своего начального направления, что попадают в объектив.

Поскольку лучи света идут именно от объекта, то наблюдатель видит на черном фоне характерное светящееся изображение контуров микробных клеток или других частиц. Темное поле зрения достигается применением специального конденсора, которым заменяют обычный конденсор светового микроскопа.

Однако эффект темного поля может быть достигнут лишь в том случае, если апертура конденсора превышает апертуру объектива на 0,2-0,4 единицы.

Темнопольную микроскопию используют для изучения живых клеток микроорганизмов. Она применяется для наблюдения за подвижностью микробов, обнаружения возбудителей некоторых болезней (лептоспироза). Однако к темном поле зрения нельзя хорошо изучить форму и внутреннее строение микробной клетки.

При рассмотрении дрожжевых клеток цитоплазма опалесцирует слабо и равномерно, на ее фоне отчетливо выделяются черные вакуоли, сильно блестящие гранулы липосом. Протопласт отмирающих клеток имеет молочно-белую окраску.

1.5. Фазово-контрастная микроскопия

Фазово-контрастная микроскопия дает возможность рассматривать живые объекты без окрашивания и фиксирования. Глаз человека реагирует на изменения длины световой волны (цвет) и ее амплитуды (интенсивность, контрастность), но не воспринимает различий по фазе.

Метод фазово-контрастной микроскопии разработан для наблюдения за прозрачными объектами, которые пропускают лучи одинаковой длины и аплитуды, но смещают их фазу. Величина смещения зависит от толщины и показателя преломления структур.

С помощью фазово-контрастного устройства фазовые изменения световых волн, проходящих через прозрачные объекты, превращаются в амплитудные, благодаря чему детали рассматриваемых объектов становятся хорошо видимыми глазом и контрастными.

Для проведения исследований в дополнение к световому микроскопу следует иметь фазово-контрастное устройство. Наиболее широко применяется модель КФ-4, состоящая из вспомогательного микроскопа, специальных фазовых объективов и конденсора с набором кольцевых диафрагм, каждая из которых соответствует фазовой пластинке определенного объектива.

Вспомогательный микроскоп устанавливают, заменяя окуляр обычного микроскопа. Для получения фазового контраста в объектив вводится сециальная фазовая пластинка, которая представляет собой тонкий диск с напылением из солей редких металлов на одну из внутренних линз объектива. Она изменяет фазу проходящей световой волны на 1/4 λ, что приводит к превращению фазовых различий в амплитудные.

На оправе фазовых объективов обозначены индексы: Ф10, Ф20, Ф40 и Ф90. Кольцевые диафрагмы установлены в револьверном диске под конденсором и поворотом диска могут быстро меняться. Кольцевая диафрагма пропускает через конденсор в плоскость препарата лишь кольцо света. Эффект фазового контраста получают путем точного совмещения кольца фазовой пластинки с проекцией кольцевой диафрагмы.

1.6. Люминесцентная микроскопия

Применение люминесцентной микроскопии основано на свойстве некоторых биологических объектов светиться при их облучении невидимыми для человеческого глаза коротковолновыми лучами (сине-фиолетовыми с длиной волны около 460 нм или ультрафиолетовыми с длиной волны 300-400 нм).

Такое явление объясняется тем, что часть энергии падающего света поглощается и освещаемый объект испускает лучи, имеющие большую длину волны, чем лучи возбуждающего света. При этом клетки светятся желто-зеленым или оранжевым светом (флуоресцируют).

Это собственная или первичная люминесценция.

Первичным свечением обладают клетки растений и водорослей благодаря наличию хлорофилла, а также некоторые бактерии, вырабатывающие пигмент. Большинство клеток микроорганизмов обладает слабой первичной люминесценцией.

Вторичная (или наведенная) люминесценция объектов, не обладающих собственной люминесценцией, достигается их обработкой специальными красителями – флуорохромами.

Наиболее широко используются флуорохромы акридиновой и тиазоловой групп (акридин оранжевый и желтый, аурамин, уранин, родамин, тиофлавин, примулин, флуоресцин и др.).

В частности, акридин оранжевый окрашивает цитоплазму в зелено-желтый, метахроматин – в ярко-красный, вакуоли – в розовый, ядро – в светло-зеленый цвет.

Люминесцентная микроскопия осуществляется в затемненной комнате с помощью специального люминесцентного микроскопа, например, МЛ-2.

В качестве источника ультрафиолетового излучения в люминесцентных микроскопах используются специальные кварцевые лампы. Прежде чем попасть на объект, лучи лампы проходят через ряд светофильтров, пропускающих только определенную часть ультрафиолетового спектра с λ = 360-380 нм.

Более доступным способом возбудителя люминесценции является использование коротковолновой части видимого света – синефиолетовых лучей с λ = 460 нм.

В этом случае наблюдения можно проводить не только в специальном люминесцентном микроскопе, но и с помощью обычного микроскопа, установив на пути лучей синий стеклянный или жидкий светофильтр.

Излишние синие лучи убирают желтым светофильтром, который помещают на окуляр микроскопа. В результате в препарате на черном фоне видны люминесцирующие объекты.

Люминесцентная микроскопия позволяет наблюдать морфологические особенности объектов, которые при обычной микроскопии лежат за пределами видимости.

Кроме того, она дает возможность дифференциации вида микробов по характеру свечения, изучения изменения структур при различных физиологических состояниях клетки.

Этот метод позволяет изучать антигенную структуру бактерий и обнаруживать возбудителей инфекционных заболеваний путем применения меченных люминесцентными красками иммунных сывороток.

1.7. Электронная микроскопия

В электронном микроскопе вместо световых лучей используется поток движущихся электронов, что позволяет увеличить разрешающую способность прибора в 100 раз и более.

Высокая разрешающая способность современных электронных микроскопов дает возможность наблюдать и изучать объекты, которые невидимы в световом микроскопе: вирусы, бактериофаги, микоплазмы, тонкое строение клеток прокариот и эукариот, их макро- и микроструктурные элементы.

Электронный микроскоп состоит из нескольких сложных узлов:

1. Колонна, в которой смонтированы электронная пушка, устройства, фокусирующие пучок электронов, конденсорная линза, камера объекта (предметный столик, объективная, промежуточная и проекционная линзы); флюоресцирующий экран, фотокамера.

2. Вакуумная установка, позволяющая создавать в колонне высокий вакуум.

3. Пульт управления.

4. Установка для электропитания, размещенная в металлическом шкафу за колонной.

5. Вспомогательные устройства.

Осветительная система электронного микроскопа состоит из электронной пушки и конденсорной линзы. В качестве линз, фокусирующих пучок электронов, используется электромагнитное поле (стеклянные линзы употреблять нельзя, так как стекло непроницаемо для электронов). Воздух препятствует движению электронов, поэтому внутри микроскопа необходимо поддерживать вакуум.

Техника подготовки препаратов для электронной микроскопии существенно отличается от той, которая используется для рассмотрения в световом микроскопе. Препараты для просматривания в электронном микроскопе готовят на очень тонкой, проницаемой для электронов подложке. В качестве подложки применяют пленки из коллодия, кварца или других материалов толщиной около 1 мкм.

В связи с тем, что пленки очень тонкие и непрочные, их помещают на специальные металлические сетки с мелкими ячейками. Общая толщина препарата и подложки должна быть не более 0,25 мкм.

С целью повышения контрастности изучаемых препаратов их подвергают дополнительной обработке в условиях глубокого вакуума путем напыления на них чрезвычайно тонкого слоя хрома, золота, платины или палладия, или используют различные контрастирующие вещества (уранилацетат, уранилнитрат, фосфорновольфрамовую кислоту).

Рассматриваемый объект помещают на предметный столик, находящийся между конденсором и объективной линзой. Проходя через исследуемый объект, пучок электронов рассеивается и фокусируется в электромагнитном преломляющем поле объективной линзы. Получается первое увеличенное действительное изображение объекта (в 40-50 тыс. раз), наблюдаемое через смотровое стекло.

Затем поток электронов попадает в электромагнитное поле проекционной линзы, которая конденсирует пучок проходящих электронов и фокусирует их на флюоресцирующем экране, давая окончательное увеличенное изображение объекта в 200-300 тыс. раз.

Под флюоресцирующим экраном находится фотокамера. Приподнимая специальной рукояткой экран, пропускают пучок электронов на фотопластинку и фотографируют изображение объекта.

Контрольные вопросы

1. Каковы основные правила работы в микробиологической лаборатории?

2. Назовите основные элементы механической части микроскопа.

3. Назовите основные элементы оптической части микроскопа.

4. Что такое числовая апертура микроскопа?

5. Чем отличаются сухие объективы от иммерсионных?

6. Каково назначение макро- и микрометрического винтов?

7.

Для чего нужна револьверная насадка?

8. Как определить увеличительную способность микроскопа?

9. Как регулировать степень освещенности препарата?

10. Назовите основные характеристики светового микросокпа.

11. В чем заключается сущность микроскопии в темном поле?

12. Поясните принцип работы фазово-контрастного микроскопа.

13. Объясните принцип работы люминесцентного микроскопа.

14. Каковы особенности работы с электронным микроскопом?

Источник: https://lifelib.info/microbiology/food/2.html

Medic-studio
Добавить комментарий