Очистка и стерилизация воздуха: Подавляющее большинство продуцентов является аэро­бами, и для их

Технология ферментных препаратов (стр. 3 из 6)

Очистка и стерилизация воздуха: Подавляющее большинство продуцентов является аэро­бами, и для их

I.8 Очистка и стерилизация воздуха

Подавляющее большинство продуцентов ферментов является аэробами, и для их нормального развития в процессе культивирования необходимо подавать в достаточном количестве стерильный воздух.

Воздух после аэрации растущей культуры может содержать споры или клетки микроорганизма – продуцента ферментов, потому перед выбросом в окружающую среду он также требует очистки. Особо высокие требования к стерильности предъявляются при подготовке воздуха для аэрации глубинной культуры.

Существует несколько способов очистки и стерилизации воздуха, основанных на двух принципах: умерщвление микроорганизмов и их механическое отделение.

Аппаратурное оформление стадии подготовки и очистки воздуха зависит от способа культивирования продуцента. При поверхностном культивировании требования к стерильности воздуха менее жесткие, чем при глубинном, и даже допускается рециркуляция аэрирующего воздуха.

Стерильные производственные помещения аэрируются стерильным воздухом, кондиционированным по температуре и влажности. Подготовка воздуха в этих условиях ничем не отличается от подготовки воздуха для аэрирования растущей культуры.

Отличие может заключаться лишь в параметрах кондиционирования, но не в снижении требований к стерильности воздуха.

К основным факторам, влияющим на быстрый рост микроорганизмов и максимальный биосинтез ими ферментов, относятся: состав питательных сред, условия приготовления и стерилизация сред, количество и способ подвода воздуха к растущей культуре, правильный выбор условий выращивания продуцента и контроля за этим процессом.

II. ПРИНЦИПЫ ПОДБОРА И МЕТОДЫ ОПТИМИЗАЦИИ СОСТАВА ПИТАТЕЛЬНЫХ СРЕД

II.1 Методы определения оптимального состава питательных сред

Основным требованием, предъявляемым к составу питательной среды, является ее полноценность для роста продуцента и обеспечения синтеза целевого продукта.

Оптимальный состав среды для каждого продуцента может быть определен двумя способами: методом эмперического подбора и с использованием математических методов планирования экспериментов. Первый способ был до недавнего времени широко распространен во всех отраслях промышленности, использующих микроорганизмы.

Знание физиологических особенностей микроорганизмов позволяло биологам методом подбора и изменения какого-либо из факторов на неизменном фоне остальных компонентов подобрать хорошую и продуктивную питательную среду, но такой способ очень длителен.

Более прогрессивным в биологических исследованиях является использование математических методов планирования экспериментов, которые позволяют значительно быстрее найти и обосновать оптимальный состав питательной среды.

Большинство математических методов планирования экспериментов имеет целью получение математической модели процесса. Обработка экспериментальных данных ведется в четкой последовательности вычислительных операций и может быть выполнена вручную.

Статистический анализ значимости коэффициентов полученного уравнения и его адекватности исследуемому процессу в изучаемом диапазоне изменения параметров процесса позволяет с достаточной уверенностью находить оптимальный состав среды и оптимальные условия культивирования по полученной математической модели процесса.

Среды в зависимости от состава делятся на синтетические и комплексные. Синтетические среды состоят из определенных по количественному составу индивидуальных веществ. Источниками углерода в таких средах могут быть углеводы, спирты, органические кислоты; источниками азота – соли, содержащие азот, аминокислоты, пептиды определенного состава, мочевина и т.д.

II.2 Оптимизация состава питательных сред

В комплексные среды обычно входят различные естественные продукты, богатые органическими соединениями, и отходы ряда производств, а также они значительно дешевле, более доступны и поэтому чаще используются в промышленности.

Их компонентами могут быть отруби, мука различных злаков, меласса, гидрол, кукурузный экстракт, выжимки плодов и овощей, жмыхи, замочные воды, барда спиртовых заводов, картофельная мезга и прочие отходы картофеле- и кукурузокрахмального производства, а также других пищевых производств.

Для поверхностного культивирования используют пшеничные отруби; они должны быть крупнолопастными, без горького или кисловатого привкуса.

Отруби содержат от 16 до 20% крахмала, 10-12% белка, в том числе важнейшие аминокислоты (в%): метионин – 0,19; цистин – 0,30; аргинин – 1,0; лизин – 0,60; триптофан – 0,30; жир – 3,0-4,0; клетчатка – 10-30; зольные элементы (Nа – 0,09, К – 1,00, Са – 0,16, Р – 0,94); микроэлементы и некоторые другие вещества. Пшеничные отруби – сырье дорогостоящее, поэтому их можно частично заменять другими компонентами. Водимый дополнительный компонент может играть роль рыхлителя среды или же обогащать ее недостающими ростовыми и питательными веществами. Такими компонентами являются солодовые ростки, шелуха крупяных культур, свекловичный жом, древесные опилки, выжимки плодов, овощей и ягод.

При обработке кукурузного зерна в крахмало-паточном производстве в замочные воды переходит до 8% сухого вещества.

Кукурузный экстракт – это замочные воды, упаренные в двух- трехкорпусных вакуум-выпарных аппаратах до содержания сухого вещества 48-50%. Он не имеет постоянного состава, что является его недостатком.

Кукурузный экстракт содержит большое количество меланоидинов и поэтому имеет темно-коричневый цвет. Он стабилен при хранении и широко применяется в ферментной промышленности.

Кукурузный экстракт является источником азотистых веществ, которые составляют 40-50% общего содержания сухого вещества в экстракте.

Углеводы являются нестабильным компонентом экстракта и могут под действием молочнокислых бактерий полностью превращаться в молочную кислоту, содержание которой при этом возрастает до 25%. В экстракте в больших количествах содержатся фосфор, калий и магний.

зольных элементов составляет 15-20% сухого вещества экстракта, а содержание фосфора может достигать 5%. Экстракт содержит все необходимые для микроорганизмов элементы, витамины группы В, ростовые вещества и биостимуляторы.

Крахмал картофельный и кукурузный выпускается четырех сортов (высший,I, II и III). Основное сортовое отличие крахмалов заключается в содержании зольных элементов, которое повышается от высшего сорта к III с 0,35 до 1,20%.

Повышается также кислотность на сухое вещество (в мл 0,1 н. раствора HCI) 18 до 30, увеличивается число разрушенных крахмальных зерен.

Кукурузный крахмал в своем составе имеет (в %) : крахмал – 98,5-98,8; белок – 0,60-0,35; жир – 0,62-0,70; зола – 0,17-0,12; растворимые вещества – 0,01-0,05; прочие сухие вещества – 0,10-0,13.

Гидрол является отходом производства глюкозы из крахмала. Он представляет собой густой темный сироп, содержащий от 67 до 72% редуцирующих сахаров. Гидрол не стандартен по составу.

Основным сахаром гидрола является глюкоза, содержание которой достигает до 80% общей суммы редуцирующих сахаров. Гидрол содержит некоторое количество органических кислот, рН гидрола около 4,0, зольность около 7%.

В минеральный состав гидрола входят фосфор, магний, натрий, железо. Используются и другие отходы переработки кукурузы.

Соевая мука выпускается трех видов: необезжиренная, полуобезжиренная и обезжиренная. Соевая мука является богатым источником азотистых веществ, особенно белков.

В ней содержится около 25% углеводов; крахмала и глюкозы почти нет (0,5-1,0%), но есть сахароза (5-10%), пентозаны, мальтоза, раффиноза, гемицеллюлозы, декстрины. Минеральный состав соевой муки богат и разнообразен, зольные элементы составляют 4,5-6,5%.

В их число входят калий, магний, кальций, натрий, железо, кремний, сера, хлор, медь, марганец, цинк, никель, фосфор. В соевой муке содержатся витамины группы В, D и А.

Состав кукурузной муки зависит от сорта перерабатываемой кукурузы. Кукурузная мука содержит 67-70% крахмала и около 10% других углеводов (сахара, клетчатка, пентозаны и т. д.). Белка в кукурузной муке мало – 10-12%, зольные элементы составляют только 0,3-1,0%, а жир – около 4%.

Солодовые ростки получаются в процессе обработки отсушенного солода в пивоварении.

Они содержат значительное количество свободных аминокислот, азотистых веществ (до 24%), золных элементов (около 8%), клетчатки (14%), экстрактивные безазотистые вещества составляют 42%.

В их состав может входить также до 5-6% зерновых примесей, представляющих собой обломки зерен солода. Солодовые ростки можно вносит в среды непосредственно или в виде их экстрактов.

Пивная дробина является отходом пивоварения. Ее выход составляет 22% сухой массы сырья, поступающего в варочное отделение.

Она может использоваться непосредственно во влажном состоянии (влажность 83%), если производство ферментных препаратов организовано при пивоваренном заводе, или же в сухом виде. Дробина имеет желтовато-коричневый цвет, приятный свежий запах.

Она содержит значительное количество белковых веществ (26-27%), жир (7-8 %), клетчатку (17-18%), зольные элементы (4-5%), безазотистые экстрактивные вещества (около 44%).

Другой отход пивоварения – осадочные пивные дрожжи. Их выход при влажности 85% составляет 1,5-2 л на 10 дал пива. Отвар дрожжей или их автолизат может служить прекрасным обогатителем питательных сред, источником биологически активных и легкоусвояемых веществ.

Пивные дрожжи богаты белковыми веществами (44-55%) и углеводами (30-40%), они содержат значительное количество минеральных солей (зольность 7-9%).

При использовании пивных дрожжей как компонента сред для ферментной промышленности требуется их обязательная очистка от хмелевых горьких веществ.

В качестве сырья также можно использовать биомассу других микроорганизмов, например плазмолизированные кормовые дрожжи, пропионовые бактерии (отход производства витамина В12), экстракты из мицелиальных масс и т.д.

Состав этих компонентов довольно близок, но различается содержанием и набором ростовых веществ и стимуляторов. Наметилась тенденция использовать гидролизаты биомасс микроорганизмов, которые получают различными способами.

Источник: https://mirznanii.com/a/125038-3/tekhnologiya-fermentnykh-preparatov-3

Очистка и стерилизация воздуха

Очистка и стерилизация воздуха: Подавляющее большинство продуцентов является аэро­бами, и для их

Культивирование микроорганизмов – продуцентов биологически активных веществ в глубинных условиях помимо собственно биосинтеза включает ряд вспомогательных технологических операций.

Прежде всего это получение сжатого стерильного воздуха, подаваемого на аэрацию, приготовление и стерилизация питательной среды, подготовка оборудования.

Эти операции во многом определяют качественные и количественные показатели процесса биосинтеза, поэтому к их аппаратурному оформлению и режиму работы предъявляют повышенные требования.

При выращивании микроорганизмов в глубинных условиях требуется непрерывная подача стерильного воздуха в ферментаторы, на аэрацию культуральной жидкости.

Воздух, подаваемый в ферментатор, не только снабжает растущую культуру кислородом, но и отводит газообразные продукты обмена и физиологическое тепло, выделяемое микроорганизмами в процессе развития, позволяет достигать однородности микробной суспензии, увеличивает скорость массопередачи и перемешивания жидкой питательной среды.

Очистка и стерилизация воздуха достигаются различными способами, предусматривающими прежде всего уничтожение микроорганизмов или их отделение.

Используются методы газовой очистки или применение антисептиков (фенол- и ртуть-содержащих соединений), повышенные или пониженные температуры, ультрафиолетовые облучения, ионизирующие излучения. Примеры промышленного использования антисептиков, повышенных или пониженных температур и других факторов свидетельствуют о их ненадежности.

Более того, эти сложные приемы мало экономичны из-за высокой устойчивости спор и конидий к высоким температурам и ионизирующим излучениям. В процессах микробиологического синтеза воздух, подаваемый на аэрацию, должен быть очищен на 99,9999999 % от примесей и микроорганизмов размером до 1 мкм.

Это требование заставляет отказаться от многих методов газовой очистки (седиментация, механическая фильтрация, инерционные и центробежные методы, аппараты мокрой очистки) как неэффективных, обеспечивающих удаление только грубых частиц.

Применение электрофильтров дает возможность очистить воздух только на 85-99%.

Наибольшее распространение получил метод фильтрации воздуха через волокнистые (маты, бумага, картон), пористые (полимеры, металлокерамика) или зернистые материалы. Такие материалы недорогостоящи в изготовлении и обладают высокой эффективностью стерилизации.

Несмотря на то что волокнистые фильтры имеют диаметр не менее 5 мкм и слабое уплотнение (промежутки не менее 50 мкм), они легко задерживают большинство микроорганизмов со средним размером около 1 мкм.

Обработку технологического и вентиляционного воздуха необходимо рассматривать как элемент технологии, играющий существенную роль в обеспечении выпуска продукции высокого качества.

Системы стерилизации воздуха классифицируются по технологическим признакам:

1) подготовка и подача воздуха или смеси газов на аэрацию культуральной жидкости в ферментаторах при аэробном культивировании;

2) подготовка и подача инертных газов (диоксид углерода, азот или их смеси) для «отдувки» из культуральной жидкости газообразных продуктов, ингибирующих рост микроорганизмов при анаэробном культивировании;

3) подготовка и подача (транспортного) сжатого воздуха и обеспечение вакуума для передачи микробных суспензий и стерильных жидкостей из одной емкости в другую (ферментаторы, дозаторы, мерники и т. д.) или в аппараты для дальнейшей обработки (центрифуги, сепараторы, отстойники, испарители, флотаторы);

4) очистка воздуха или смеси газов, отводимых от всех видов технологического оборудования.

Каждая из этих систем имеет свои особенности, но процессы стерилизации связаны общей теоретической основой.

Технологическая схема очистки и стерилизации воздуха для аэрации

В настоящее время широко применяется технологическая схема получения, очистки и стерилизации сжатого воздуха, включающая следующие стадии: предварительную (грубую) очистку от механических примесей, сжатие, охлаждение, отделение сконденсированных паров влаги и масла (при поршневых компрессорах), стерилизацию (рис. 2.8). Для защиты компрессора атмосферный воздух предварительно очищают от крупных частиц пыли, а затем сжимают до требуемого давления. При сжатии воздух нагревается до температуры 100-200 °С, поэтому его необходимо охладить до оптимальной температуры культивирования микроорганизма-продуцента. Температура воздуха, подаваемого на аэрацию, оказывает существенное влияние на накопление конечного продукта. Например, микроорганизмы-продуценты антибиотиков снижают продуктивность при температуре воздуха, поступающего в аппарат, выше 40 °С. Оптимальная температура роста этих микроорганизмов 27-28°С.

Получение сжатого, очищенного от микроорганизмов воздуха определенной температуры и влажности – сложная технологическая задача, осуществляемая в специальной системе.

Система состоит из трех частей, соединенных последовательно: в первой части происходят очистка атмосферного воздуха от пыли и его сжатие, во второй – подготовка и поддержание воздуха в оптимальном термодинамическом состоянии по влажности и температуре, в третьей – окончательная очистка воздуха (в фильтрах тонкой очистки) перед подачей в ферментаторы.

Поддержание определенной температуры сжатого воздуха обусловливается не только самой культурой микроорганизма, но и высоким влагосодержанием атмосферного воздуха. При охлаждении сжатого воздуха выпадает 50-70 % исходной влаги, которая увлажняет волокна аэрозольных фильтров, и эффективность их действия резко снижается.

Чтобы насадки аэрозольных фильтров не увлажнялись, воздух после компрессора охлаждают до 25-30 °С. После отделения влаги воздух нагревается до температуры культивирования. Окончательное подсушивание воздуха может проводиться в сушилке между головным и индивидуальными фильтрами.

На предприятиях микробиологической промышленности очистка и стерилизация воздуха осуществляется с помощью системы различных фильтров: предварительной очистки периодического или непрерывного действия, грубой и тонкой очистки.

Фильтры предварительной очистки

Фильтры такого типа устанавливают на всасывающей линии перед компрессором. Путем инерционного осаждения очищают воздух от крупных частиц размером более 5 мкм.

В фильтрующих материалах предусматриваются большие промежутки между улавливающими элементами для максимального снижения сопротивления потоку при высокой скорости фильтрации воздуха – 1,5-3,0 м/с.

Чтобы сухие частицы после осаждения при такой скорости потока не выносились из фильтра, слои его промасливают. Фильтры этого класса часто называют масляными, или висциновыми.

К фильтрам периодического действия относятся кассетные регенерируемые масляные фильтры и кассетные фильтры сухого типа.

Кассетные регенерируемые масляные фильтры различаются по размерам, форме и виду фильтрующей среды. Наибольшее распространение получили сеточные фильтры типа ФЯР. Такие фильтры просты, надежны в эксплуатации, улавливают микроорганизмы и частицы пыли размером более 5 мкм.

Кассетные регенерируемые масляные фильтры работают с номинальной производительностью при запыленности воздуха не более о мг/м3. Такой фильтр задерживает на поверхности насадки 92-99 % воздушной пыли. Продолжительность его эксплуатации без регенерации зависит от степени загрязненности воздуха.

Если содержание пыли возрастает от 0,5 до 5,0 мг/м3, то длительность работы фильтра сокращается с 800 до 80 ч.

Кассетные фильтры сухого типа состоят из 10-15 слоев перфорированных металлических и винипластовых листов. Площадь рабочего сечения 0,22 м2, производительность 0,43 м3/с, скорость фильтрации 117 м/мин, начальное сопротивление фильтра 49 Па, пылеемкость 400-450 г/м2, эффективность очистки 70 %, масса фильтра 5 кг.

В кассетных сменных фильтрах сухого типа в качестве фильтрующего материала можно применять пенополиуретан, стеклянное или химическое волокно, маты из нетканых материалов. Эти фильтры свободны от недостатков, которые присущи масляным фильтрам, – запах, унос масла.

Эффективность очистки воздуха в таких фильтрах составляет 70-85 %, пылеемкость 200-400 г/м2, производительность 0,43-0,610 м3/с.

Фильтры непрерывного действия существуют трех типов: самоочищающиеся масляные с непрерывной регенерацией фильтрующей поверхности в ванне с маслом; рулонные (катушечные), в которых чистый фильтрующий материал непрерывно поступает с одной катушки, а использованный наматывается на другую; волокнистые, промываемые водой из форсунок.

Масляные самоочищающиеся фильтры состоят из непрерывно движущейся в вертикальной плоскости фильтрующей бесконечной панели и масляной ванны (рис. 2.9).

При прохождении через ванну загрязненные участки отмываются от пыли и вновь промасливаются, а пыль оседает на дне ванны в виде шлака.

При начальной концентрации пыли 1-2 мг/м3 степень очистки составляет 90-98 %, пылеемкость фильтра исчерпывается через 300-500 ч работы. Производительность таких фильтров 100-400 тыс. м3/ч.

Рулонные автоматические фильтры имеют производительность 20, 40, 80 и 120 тыс. м3/ч. На рис. 2.10 приведена схема работы такого фильтра. Фильтрующим материалом служат упругие маты из стеклянных синтетических волокон, склеенных связывающими материалами. Срок непрерывной работы одного рулона 1 год.

В волокнистых фильтрах используются объемные маты из волокон полимеров. В результате электростатического притяжения на волокнах улавливаются субмикронные частицы. Фильтры получили широкое распространение для предварительной очистки и стерилизации приточного воздуха. Производительность волокнистого фильтра 555 м3/мин.

Фильтры грубой очистки

Предназначены для улавливания основной массы загрязнений, попавших в систему после прохождения фильтров предварительной очистки и компрессора, а также для удлинения срока службы фильтров тонкой очистки, выполняющих основной процесс стерилизации на стадии фильтрации. Как правило, это фильтры большой емкости. Они обслуживают несколько ферментаторов и называются головными. Головной фильтр дублирует работу индивидуальных фильтров и повышает степень очистки и стерилизации воздуха.

Головной фильтр (рис. 2.11) обычно представляет собой вертикальный сосуд с решеткой у днища. На решетку укладывают слой стекловаты, а затем слой гранулированного активного угля высотой 0,8-1,0 см и еще слой ваты.

На микробиологических предприятиях применяют головные фильтры кассетного типа производительностью 110, 380 и 550 м3/мин. В качестве фильтрующего материала используют стекловолокно с волокнами диаметром 6, 12 и 21 мкм.

Головные фильтры стерилизуют острым паром в течение 4 ч при давлении 0,12-0,15 кПа, а затем просушивают сухим воздухом. Головные фильтры обычно имеют низкое сопротивление (100-200 Па) и высокую пылеемкость.

Фильтры тонкой очистки

Фильтры тонкой очистки и стерилизации необходимы для улавливания загрязнений, пропущенных другими фильтрами, а также всех возможных загрязнений, попавших в систему по случайным причинам.

Работа этих фильтров должна быть особенно надежной, так как это последняя ступень очистки и стерилизации воздуха на пути к ферментатору.

Конструктивно фильтры тонкой очистки во многом похожи на фильтры грубой очистки, только они значительно меньше размерами и в них используются более эффективные фильтрующие материалы (табл. 2.2). В настоящее время разработано несколько конструкций фильтров тонкой очистки различной производительности.

На рис. 2.12 представлены схемы фильтров со сменными фильтрующими элементами из нетканых материалов.

В конструкции фильтра тонкой очистки Ф1 и Ф2 используется готовый сменный фильтрующий элемент из базальтового супертонкого волокна.

Наибольшее распространение для очистки и стерилизации воздуха находят конструкции, в которых используются быстро заменяемые готовые стандартные фильтрующие патроны (рис. 2.12, б).

В микробиологической промышленности для очистки и стерилизации воздуха применяют также фильтры марки ФТО. Эти фильтры набиваются особой устойчивой гидрофобной тканью, которая полностью очищает воздух от микроорганизмов. Фильтры выпускаются различных типов – от ФТО-60 до ФТО-1000.

Цифры означают производительность по воздуху в м3/ч. Марку фильтра выбирают в зависимости от производительности ферментатора. Фильтрующий элемент фильтра ФТО-750 имеет диаметр 360 мм и высоту 600 мм. При нагрузке 750 м3/ч сопротивление фильтра составляет 274-294 Па. На рис. 2.

13 представлена схема фильтра тонкой очистки ФТО-60. В патронных фильтрах могут быть использованы бумага из базальтовых супертонких волокон, гофрированный базальтовый картон и различные фторопластовые элементы.

Фильтры тонкой очистки воздуха практически обеспечивают 100%-ную очистку и стерилизацию воздуха.

Они стерилизуются острым паром в технологической обвязке с ферментатором без извлечения фильтрующих элементов из корпуса фильтра. Фильтрующие элементы – пластины и цилиндрические патроны – служат 1,5-2 года.

Системы очистки и стерилизации воздуха

Для надежной работы всей технологической схемы очистки и стерилизации воздуха и ее отдельных узлов необходимы соблюдение определенных требований к технологической обвязке фильтров, поддержание определенного термодинамического режима воздуха в системе.

Принципиальная технологическая схема очистки и стерилизации воздуха представлена на рис. 2.8. Воздух из воздухоразборника поступает в фильтр предварительной очистки 1.

Сжатие воздуха до 350-500 кПа осуществляется в компрессоре 2, охлаждение до температуры 30-40 °С в холодильнике 3 с последующим отделением образующегося аэрозоля во влагоотделителе 4. На входе и выходе из холодильника температура воздуха контролируется приборами.

Относительная влажность воздуха и температура определяются после выхода из нагревателя 5 термодатчиком. Принцип действия автоматического контроля параметров воздуха заключается в следующем.

Если приборы регистрируют отклонение температуры от заданной на входе в фильтр 6, то специальные регуляторы будут воздействовать на подачу пара в нагреватель таким образом, чтобы изменить температуру воздуха до величины, определяемой регламентом.

Окончательная стерилизация воздуха осуществляется в индивидуальном фильтре тонкой очистки 7. Для оценки эффективности работы схемы очистки и стерилизации воздуха применяется метод улавливания искусственных аэрозолей. При этом используются аэрозоли жидкие – масляный туман (0,3 мкм) и твердые – бактериальный, бихромат калия (0,6-0,8мкм), красители метиленового синего (0,5 мкм).

Контроль эффективности действия фильтров, особенно индивидуальных, записывается анализатором запыленности очищенного воздуха типа АЗ-З и АЗ-5. Имея высокую чувствительность – 2-3 тыс. частиц размером 0,3 мкм в 1м3, прибор позволяет проводить контроль микробиологической обсемененности воздуха.

Для стерилизации фильтров и воздушных линий применяют чаще всего острый пар. Этот метод создает очень жесткие условия для выбора фильтрующих материалов, так как через фильтр под давлением пропускается большое количество острого пара, часто загрязненного и с большим содержанием конденсата.

Поэтому более рациональна двусторонняя стерилизация фильтров паром. При этом пар подают в воздушный трубопровод до и после фильтра одновременно. Для этого в фильтр прокладывают обводную линию для пара, которая соединяет вход и выход воздушного трубопровода.

Пар должен поступать чистый и сухой температурой 120 °С при стабилизированном давлении. Длительность стерилизации колеблется от 30 до 60 мин в зависимости от вида фильтрующего материала.

Стерилизация воздуха, выходящего из ферментатора

Это одна из основных ступеней технологического процесса биосинтеза. Воздух, удаляемый из ферментатора, содержит большое количество микроорганизмов. Так, среднее количество клеток дрожжей в 1 м3 отработанного воздуха составляет 3,4-3,6х106.

Выбрасываемый из ферментаторов воздух имеет высокую влажность. Для отделения влаги используют жалюзийные конструкции, отличающиеся низким гидравлическим сопротивлением. Весьма эффективны при этом вязаные и тканевые сетки из нержавеющего материала или термостойкого пластика.

На них сепарируется около 99 % влаги.

В зарубежной практике для очистки и стерилизации воздуха, выходящего из ферментаторов, широко используют фильтрующие элементы из микроволокон боросиликатного стекла, связанных эпоксирезиной. Фильтр-патроны из такого материала имеют высокую стерилизующую способность (до 99,9999 %) и хорошо улавливают частицы размером более 0,6 мкм.

Стерилизация таких фильтров осуществляется текучим паром. Большое распространение получили фильтры из пористой нержавеющей стали, никеля или бронзы. Эти элементы очень прочны и устойчивы к воздействию высоких температур и влаги. В начале эксплуатации их сопротивление не более 0,07 МПа, а в процессе фильтрования оно возрастает до 0,5 МПа.

Глубинное культивирование микроорганизмов проходит в аппаратах с давлением 0,02-0,06 МПа.

Пористые материалы, как правило, имеют большое сопротивление, что затрудняет их применение в схеме очистки и стерилизации воздуха, выходящего из ферментатора.

Специфичность этого процесса требует применения как минимум двухстадийной очистки воздуха на выходе из ферментатора. На первой стадии производится влагоотделение, на второй – доочистка воздуха.

Источник: http://www.spec-kniga.ru/tehnohimicheski-kontrol/obshchaya-tekhnologiya-mikrobiologicheskih-proizvodstv/tipovaya-skhema-mikrobiologicheskogo-proizvodstva-ochistka-i-sterilizaciya-vozduha.html

Medic-studio
Добавить комментарий