ПЦР ДИАГНОСТИКА. ПРОБОПОДГОТОВКА: ПЦР в диагностике инфекционных болезней ПЦР – метод молекулярной

Содержание
  1. ПЦР-диагностика
  2. Принцип ПЦР- исследования
  3. Кому мы обязаны появлением метода ПЦР?
  4. Выделение ДНК
  5. Элонгация
  6. Детекция
  7. Преимущества методики ПЦР
  8. Области применения в медицине
  9. Молекулярно-биологические методы, используемые в диагностике инфекционных болезней (ПЦР, рестрикционный анализ и др.)
  10. ПЦР-диагностика: на чем основана, как делают, биоматериал и подготовка, для каких болезней подходит?
  11. В чем суть полимеразной цепной реакции?
  12. Достоинства и недостатки
  13. Чего «боится» ПЦР, что она умеет и как к ней подготовиться?
  14. Как правильно подготовиться, чтобы получить достоверный результат?
  15. Пцр может работать в любой биологической среде
  16. ВИЧ и полимеразная цепная реакция
  17. ПЦР и гепатиты
  18. Папилломовирусная инфекция
  19. Другие ИППП и TORCH-инфекции
  20. ПЦР – главный метод обнаружения скрытых инфекций
  21. : ПЦР – суть и применение
  22. Молекулярно-генетические методы диагностики инфекционных болезней

ПЦР-диагностика

ПЦР ДИАГНОСТИКА. ПРОБОПОДГОТОВКА: ПЦР в диагностике инфекционных болезней ПЦР - метод молекулярной

Полимеразно-цепная реакция (ПЦР) – это одно из самых ярких достижений в сфере молекулярной биологии. Метод получил широчайшее распространение в разных областях науки.

Благодаря очень высокой специфичности и чувствительности, метод ПЦР применяется в медицине, биологии, ветеринарии, криминалистике, санитарной службе и других отраслях деятельности человека.

Для анализа методом ПЦР можно использовать любые биологические материалы, которые содержат нуклеиновые кислоты (молекулу ДНК или РНК).

Принцип ПЦР- исследования

У каждого живого существа, по крайней мере, на нашей планете, есть уникальный «отпечаток» – ДНК (дезоксирибонуклеиновая кислота), которая отвечает за передачу наследственных факторов от предков к потомкам.

Структурно эта молекула представляет собой две нити из молекул-азотитых оснований, удерживаемые рядом друг с другом химическими связями и скрученные в спираль (считается, что для компактности). Из курса биологии вы можете помнить такие названия, как аденин (А), гуанин (Г), тимидин (Т) и цитозин (ц). Это 4 нуклеотида, которые и создают последовательность ДНК.

Вирусы хранят свою генетическую информацию в другой нуклеиновой кислоте – РНК.
Информация об уже изученных ДНК и РНК хранится в научных базах лабораторий.

После того, как был изобретен метод ПЦР, для многих возбудителей различных заболеваний (бактерии, грибки и вирусы) были созданы свои специфические генетические детекторы (праймеры) – уникальные последовательности нуклеотидов, характерных только для конкретного возбудителя.

И если поместить их в пробирку с исследуемым материалом, при наличии в нем ДНК или РНК «живых» возбудителей, праймеры запускают реакцию репликации – создания огромного числа копий, которое можно идентифицировать визуально. Т.е. они начинают копировать свою ДНК/РНК десятки раз. И при подсчете результатов сотрудники лаборатории могут понять, есть ли искомые бактерии и вирусы в исследуемом образце, или нет, именно поэтому результаты ПЦР чаще всего качественные, т.е. «обнаружено» или «не обнаружено».

Кому мы обязаны появлением метода ПЦР?

Со слов американского биохимика Керри Мюллиса (Kary Mullis), идея идентифицировать живые организмы по короткому участку их генетического кода (ДНК) пришла ему в голову в 1983 году, по пути с работы домой. А в основе этой идеи, лежала работа другого американского биохимика, Артура Корнберга (Arthur Kornberg), которая в свое время не нашла отклика у научного сообщества.

Керри допустил возможность того, чтобы взять молекулу ДНК какого-либо организма, с помощью высокой температуры «распустить» ее спираль на две нити, специфическими маркерами-праймеры пометить уникальные для этого микроорганизма участки ДНК и затем, применив фермент ДНК-полимеразу, создать из двух нитей две новые молекулы ДНК. Но уже содержащие в себе меченные праймеры. И потом останется просто искать эти участки в диагностическом материале.

В итоге, корпорация CETUS, в которой работал Мюлис, выделила ему команду ученых. И в 1985 году, в издании Американского общества генетики человека, появилась публикация с теоретическим обоснованием ПЦР, как метода идентификации генетического материала живых организмов.

Выделение ДНК

Сначала пробу биологического материала подготавливают: центрифугируют, осаждают и т.д. Затем лаборантам необходимо выделить ДНК из полученного биологического концентрата. Амплификация (увеличение числа копий ДНК) Важнейший этап исследования.

Проводится в термоциклере и именно здесь проходят все процессы, подпадающие под определение полимеразно-цепная реакция: денатурация, отжиг, элонгация. Денатурация Самый первый этап – развернуть (денатурировать) нуклеиновые кислоты, чтоб сделать их доступными для дальнейшей работы.

Осуществляется путем нагрева реакционной смеси до 80-90 °C. Отжиг Денатурированные (распущенные) ДНК/РНК обрабатывают праймерами – изготовленными в лабораторных условиях коротенькими цепочками нуклеиновых кислот.

Благодаря запрограммированному участку, праймеры прикрепляются только к тем нуклеиновым кислотам, для которых были созданы. Например, праймер для вируса простого герпеса 1 типа, никогда не свяжется с ДНК другого вируса, микроорганизма или клетки.

Именно праймеры обусловливают крайне высокую специфичность ПЦР – способность реагировать только на нуклеиновые молекулы конкретных типов, видов классов и даже штаммов микроорганизмов. Или отдельные виды клеток живых организмов.

Элонгация

Или синтез. После завершения процесса отжига, в реакционной смеси создают условия для активности полимеразы. Фермент, ориентируясь на молекулы праймеров (а не исходных нуклеиновых кислот), начинает синтез новых ниток ДНК/РНК. Которые становятся копиями исходных, искомых молекул нуклеиновых кислот.
Такой температурный цикл проводится 30 и более раз.

В результате, даже при изначально небольшом количестве искомого генетического материала, в реакционной смеси накапливается значительное число «помеченных» праймерами нуклеиновых кислот (растет экспоненциально, с удвоением при каждом цикле).

Обнаружить большие количества ДНК/РНК намного проще, за счет чего реализуется еще одно преимущество ПЦР – высочайшая чувствительность.

Детекция

Оценка результатов ПЦР проводится несколькими путями:

  1. Электрофорез в вязкой среде. Суть в том, что ДНК/РНК заряжены электрически и движутся к одному из электродов. В среду (агар или полиакридный гель) добавляют краситель ДНК (например – бромистый этидий). В процессе сеанса электрофореза, молекулы нуклеиновых кислот движутся и формируют скопления, подкрашенные этидием. Под ультрафиолетом, это выглядит в виде полосок разной толщины и яркости.
  2. Метод гибридизации. Используются праймеры, заранее помеченные люминофором (флуорофором). После нужного числа температурных циклов, применяют специальный прибор – детектор флюоресценции. За счет того, что в образец можно добавлять флуорофоры для разных мишеней (они будут и светиться под ультрафиолетом разным цветом), метод гибридизации подходит для диагностики сразу нескольких мишеней в одном образце.
  3. ПЦР диагностика в реальном времени (real-time PCR). Отличается тем, что детекция проводится прямо в процессе амплификации. Для этого нужны зонды-люминофоры (из предыдущего пункта) и специальные приборы ДНК-амплификаторы. Эти устройства оценивают нарастание яркости люминофора после каждого температурного цикла и впоследствии, вычисляют исходное число искомых нуклеиновых кислот в образце.

Электрофорез и гибридизация подходят только для качественной оценки, то есть дают ответ на вопрос, есть ли в образце искомый материал. ПЦР в реальном времени – единственный доступный метод количественной оценки.
Если мишеней для праймеров в образце не окажется, то температурные циклы пройдут в холостую и при детекции будет получен отрицательный результат.

Преимущества методики ПЦР

Всего разработано более 10 разных методик амплификации, применяемых лабораториями в зависимости от исходных условий и поставленных целей. Общим для них есть высокая чувствительность (для положительного результата достаточно 40 (!) или менее искомых копий ДНК в 1 мл образца, то есть вероятность ложноотрицательного ответа ничтожно мала.

И очень высокая специфичность: вероятность ложноположительного ответа составляет менее 1%. Но точность результатов сильно зависит от качества сбора диагностического материала, тщательного соблюдения всех технических требований к каждому этапу и качеству оборудования, расходных материалов (буфера, праймеров, раствора для отмывки и т.д.).

Области применения в медицине

В дерматовенерологии ПЦР используют для выявления венерических заболеваний: микоплазменной, хламидийной инфекций, сифилиса, генитального герпеса и др. Инфекционисты активно используют ПЦР для диагностики туберкулеза, ВИЧ, вирусных гепатитов, герпеса, мононуклеоза, вируса Эпштейн-Барр и др.).

А с помощью ПЦР в реальном времени, оценивая вирусную нагрузку, врачи могут составить мнение о динамике заболевания, отклике на лечение, что особенно актуально для пациентов с ВИЧ, принимающих терапию. Также благодаря ПЦР врачи могут в течение нескольких дней с уверенностью идентифицировать коклюш и паракоклюш, выявить возбудителей эпидемии ОРВИ.

Уточняются типы вируса гриппа, циркулирующие на определенной территории, на основании чего появляется возможность разработать эффективную вакцину для каждого сезона гриппа. В течение суток или быстрее можно установить вид возбудителя кишечной инфекции, а значит – назначить адекватное лечение и обнаружить вероятный источник заражения.

Летом, ПЦР актуальна для диагностики заболеваний, передаваемых иксодовыми клещами: боррелиоза (болезни Лайма), клещевых энцефалитов. Метод позволяет работать с любым биологическим материалом. Гемотрансмиссивные инфекции (сифилис, ВИЧ, гепатиты, боррелиоз) исследуются по пробе венозной крови или спинномозговой жидкости. Кожные болезни (герпес, грибки) – по соскобу с пораженного участка.

Венерические и урологические – по образцу мочи, спермы, влагалищного отделяемого. Так что в медицине, ПЦР применяется везде, где нужна высокая точность и быстрота получения результатов.

Лабораторные исследования, выполняющиеся методом ПЦР:

пцр диагностика на Инфекции:

ПЦР на ВИЧ
ПЦР на Вирусные гепатиты

Источник: https://www.labquest.ru/articles/pcr-diagnostika/

Молекулярно-биологические методы, используемые в диагностике инфекционных болезней (ПЦР, рестрикционный анализ и др.)

ПЦР ДИАГНОСТИКА. ПРОБОПОДГОТОВКА: ПЦР в диагностике инфекционных болезней ПЦР - метод молекулярной

Полимеразная цепная реакцияпозволяет обнаружить микроб в исследуемом материале (воде, продуктах, материале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследуемого материала выделяют ДНК, в которой определяют наличие специфичного для данного микроба гена. Обнаружение гена осуществляют его накоплением. Для этого необходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следующим образом.

Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомого гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды.

Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в результате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом количество ДНК гена будет увеличиваться каждый раз вдвое.

Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ. Данный метод основан на применении ферментов, носящих название рестриктаз. Рестриктазы представляют собой эндонуклеазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов.

Особое значение для методов молекулярной генетики имеют рестриктазы, которые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относительно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может происходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической единицы находится строго определенное (генетически задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашивают бромистым этидием и фотографируют в УФ-излучении. Таким образом можно получить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, выделенных из различных штаммов, можно определить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергнутые мутациям.

Этот метод используется также как начальный этап метода определения последовательности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства различных ДНК. Применяется при идентификации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная молекула нуклеиновой кислоты, меченная радиоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, содержащий радиоактивный зонд. Создаются условия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образуют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, отличается консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких копиях.

Фрагменты ДНК, полученные после обработки ее рестриктазами, содержат последовательности генов рРНК, которые могут быть обнаружены методом молекулярной гибридизации с меченой рРНК соответствующего виды бактерий.

Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штаммов и определение их вида.

В настоящее время риботипирование проводится в автоматическом режиме в специальных приборах.

Опосредованная транскрипцией амплификация рРНК используется для диагностики смешанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гибридизации амплифицированных рРНК, специфичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице выделенной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммуноферментного анализа (ИФА).

Реакция проводится в автоматическом режиме в установках, в которых одномоментное определение рРНК, принадлежащих различным видам бактерий, достигается разделением амплифицированного пула рРНК на несколько проб, в которые вносятся комплементарные видоспецифическим рРНК меченые олигонуклеотиды для гибридизации.

3. Расшифруйте результаты обследования работника мясокомбината: реакция Райта «+», проба Бюрне «+ + + +», ОФП – 6. Дать заключение.

Расшифруйте результаты

Реакция Райта (реакция развёрнутой агглютинации) + – сомнительная агглютинация (титр 1:50). При таких результатах рекомендуется повторная постановка р-ции Райта через некоторое время (7-10 дней)

Пробы Бюрне (кожно-аллергическая проба) ++++ – резко положительная.

Она определяет способность организма специфически отвечать местной реакцией кожи на внутрикожное введение бруцеллина – фильтрата бульонной культуры бруцелл.

Она становится резко положительной на 3-4 день от начала болезни, в дальнейшем сохраняется с большим постоянством на протяжении очень длительного времени, даже после клинического выздоровления.

ОФП (опсонофагоцитарная проба) 6 –слабоположительная. Её проводят с 15-20 дня заболевания.

Она основана на способности сегментоядерных нейтрофилов фагоцитировать бруцеллы благодаря наличию в крови человека специфических опсонинов, нарастающих в процессе бруцеллезной болезни (можно определить по формуле: Фагоцитарное Число Больного разделить на Фагоцитарное Число Здорового (Фагоцитарное Число – это среднее число поглощенных микробных клеток в одном фагоците)).

Реакция Райта и проба Бюрне взаимно дополняют друг друга. Максимальный диагностический эффект достигается при комплексном их применение, что является надежным способом диагностики бруцеллеза.

Вследствие сомнительной реакции Райта можно предположить: латентный период либо недавно перенесенное заболевание – бруцеллез.

А положительная пробы Бюрне сохраняется в течение длительного времени, даже после полного клинического выздоровления.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 81

1. Гонококк и гонококковая инфекция.

Нейсcерии – грамотрицательные аэробные кокки, относящиеся к роду Neisseria, включающему 8 видов: Neisseria meningitides, Niesseria gonorrhoeae, N. flava, N. subflava, N. perflava, N. sicca.

Морфология: неподвижные неспорогенные грамотрицательные диплококки, образующие капсулу, полиморфны – встречаются в виде мелких или крупных форм а так же в виде полочек, хорошо окрашиваются анилиновыми красителями (метиленовым синим, бриллиантовым зелёным и т. д.), под действием пенициллина образуют L-формы, могут менять свойства и превратиться в грамположительную форму.

Культуральные свойства: аэробы, хемоорганотрофы; для роста требуют свежеприготовленные влажные среды с добавлением нативных белков крови, сыворотки или асцитической жидкости .

Не вызывают гемолиза на средах, содержащих кровь; на средах с добавлением молока, желатина и картофеля не растут.

На плотных питательных средах через 24ч, при содержании протеина II образуют слегка мутные бесцветные колонии, не содержащие его образуют круглые прозрачные колонии в виде капель росы, на жидких питательных средах растут диффузно и образуют плёнку, через несколько часов оседающую на дно.

Биохимическая активность: крайне низкая – разлагают только глюкозу, продуцируют каталазу и цитохромоксидазу, протеолитическая активность отсутствует, H2S, аммиака, индола не образует.

Антигенная структура: Содержит А и К антигены, ЛПС обладают сильной иммуногенностью, основную антигенную нагрузку несут пили и белки мембраны. Наружная мембрана содержит протеины I, II, III классов, проявляющих сильные иммуногеннные свойства

Факторы патогенности: капсула, пили, эндотоксин, белки мембраны

Капсула обладает антифагоцитарным действием. Пили обеспечивают адгезию к эпителию. Клеточная стенка содержит эндотоксин. Поверхностный белок I класса – обеспечивает устойчивость к бактерицидным факторам слизистых оболочек. Класса II – (протеины мутности, ОРА-протеины) обуславливают прикрепление к эпителию, препятствуют фагоцитозу. N. синтезируют IgA протеазу, расщепляющую Ig.

Резистентность: очень неустойчивы в окружающей среде, чувствительны к действию антисептиков, высокочувствительны к пенициллинам, тетрациклину, стрептомицину. Способны к утилизации пенициллинов при приобретении бета-лактамаз.

Патогенез:Входные ворота – цилиндрический эпителий мочеполовых путей. Гонококки прикрепляются к эпителию посредством поверхностных белков, вызывают гибель и слущивание клеток, захватываются клетками, где размножаются, попадают на БМ, после чего попадают на соед. ткань и вызывают воспаление или попадают в кровь с возможным дессиминированием.

Иммунитет – почти отсутствует.

Микробиологическая диагностика:

Бактериоскопическое исследование: Материалом для исследования служит гнойное отделяемое из уретры, влагалища, примой кишки, глотки, сыворотки крови. Готовят мазки, окраска по Граму, При «+» результате – обнаруживают гонококки – грам+ диплококки бобовидной формы., находятся внутри лейкоцитов. Положительный диагноз ставится при острой форме гонореи до применения антибиотиков.

Бактериологическое исследование. Материал засевают на чашки Петри со специальными питательными средами — КДС, сывороточным агаром. Среда КДС содержит питательный агар с добавлением в определенной концентрации казеина, дрожжевого экстракта и сыворотки крови.

Посевы инкубируют при 37°С в течение 24—72 ч. Гонококки образуют круглые прозрачные колонии, напоминающие капли росы, в отличие от более мутных колоний стрептококков или пигментированных колоний стафилококков, которые также могут расти на этих средах.

Подо-зрительные колонии пересевают в пробирки на соответствующие среды для получения чистых культур, которые идентифицируют по сахаролитическим свойствам на средах «пестрого» ряда (полужидкий агар с сывороткой и углеводом).

Гонококк ферментирует только глюкозу с образованием кислоты..

Серодиагностика. В некоторых случаях ставят РСК Борде — Жангу. В качестве антигена используют взвесь убитых гонококков. Реакция Борде—Жангу имеет вспомогательное значение при диагностике гонореи. Она положительна при хронической и осложненной гонорее.

Лечение: антибиотикотерапия (пенициллин, тетрациклин, канамицин), иммунотерапия – Гонококковая вакцина – взвесь гонококков, убитых нагреванием, используется для вакцинотерапии хронической гонореи.

2. Понятие об экзо – и эндогенной, очаговой и генерализованной, острой и подострой, хронической, абортивной, смешанной, вторичной инфекциях. Реинфекция, суперинфекция, рецидив. Понятие о внутриутробных, профессиональных инфекциях. Примеры.

Инфе́кция — заражение живых организмов микроорганизмами — бактериями, грибами, простейшими, — или вирусами. Термин означает различные виды взаимодействия чужеродных микроорганизмов с организмом человека (в медицине), животных (в зоотехнике, ветеринарии), растений (в агрономии).

Эндогенная инфекция – инфекция, обусловленная активацией уже находящегося в организме облигатно-патогенного микроба (напр., микобактерий туберкулеза) или микробами – нормальными обитателями тела человека.

Обычно наступает в результате снижения естественного или (и) приобретенного иммунитета, а также в результате пассивного заноса большой дозы микроба в стерильные области тела человека. методы микробиол. д-ки такие же, как при экзогенных инфекциях. Кроме установления возбудителя, важно определить, в т ч. иммунол.

методиками, поврежденное звено иммунной системы и факторы, вызвавшие его повреждение. Следует отличать от метастатической инфекции.

Экзогенная инфекция – инфекция, вызванная возбудителем, поступившим в организм из окружающей среды. Экзогенная микрофлора вегетирует на поверхности кожи и слизистых оболочек человека, находится на предметах окружающей среды, в воздухе. Экзогенная инфекция подразделяется на воздушную, капельную и контактную.

Инфекция очаговая — это И., при ко то рой процесс ло ка ли зу ет ся в опре де лен ном органе или тка ни орга низма; суще ство ва ние И. о. от рица ет ся, мож но го во рить лишь о ло каль ном про яв ле нии вза и мо­действия воз бу ди те ля с ма к ро орга низмом.

Очаговые инфекции вызывают, как известно, иногда, кроме тканевых и висцеральных определений, суставные, почечные, сердечно-сосудистые, эндокринные и пр., и различные неопределенные расстройства общего порядка: астению, адинамию, бессонницу или сонливость, кефалалгию, разные неопределенные мышечные и суставные алгии, пальпитации, диспептические расстройства.

Инфекция генерализованная – И., при которой возбудители распространились преимущественно лимфогематогенным путем по всему макроорганизму.

Развитие острой инфекции с включением специфических иммунных форм защиты можно разбить на ряд этапов.

1. Начало инфекционного процесса – этап, характеризующийся моментальным включением неспецифических форм иммунного реагирования .

2. Индукция специфического ответа – этап, обусловленный неспособностью врожденного иммунитета нейтрализовать патоген. Начинается формирование пула антигенспецифических Т-клеток и В-клеток . При этом на фоне раннего развития специфического ответа происходит размножение и накопление патогена.

3. Через 4-5 дня от момента заражения сформированные клоны Т- и В-клеток начинают атаку на патоген, завершающуюся его уничтожением.

4. Заключительный этап характеризуется накоплением специфических к патогену клеток памяти. В итоге с окончанием инфекционного процесса при участии факторов специфической иммунной защиты формируется состояние протективного иммунитета к конкретной инфекции.

Абортивная инфекция — одна из наиболее распространённых форм бессимптомных поражений.

Такие процессы могут возникать при видовой или внутривидовой, естественной либо искусственной невосприимчивости (поэтому человек не болеет многими болезнями других животных).

Механизмы невосприимчивости эффективно блокируют жизнедеятельность микроорганизмов, возбудитель не размножается в организме, инфекционный цикл возбудителя прерывается, он погибает и удаляется из макроорганизма.

Смешанные инфекции – инфекционные процессы, развивающиеся в организме при одновременном сочетанном воздействии двух и более возбудителей.

Реинфекция – повторное заражение переболевшего какой-либо инфекционной болезнью возбудителями той же болезни, приведшее к развитию инфекционного процесса.

Суперинфекция – (superinfection) – повторное заражение новым инфекционным заболеванием в условиях незавершившегося инфекционного заболевания, вызванное другим микроорганизмом, обычно устойчивым к лекарственному веществу, которое применялось для лечения первичной инфекции.

Возбудителем новой инфекции может быть один из тех микроорганизмов, которые в норме являются безвредными обитателями человеческого организма, но становятся патогенными при удалении других микроорганизмов в результате приема лекарственных веществ; или же он может являться устойчивой разновидностью возбудителя первичной инфекции.;

Рецидив в медицине — возобновление болезни после кажущегося полного выздоровления (ремиссии). Рецидив объясняется тем обстоятельством, что патоген в ходе лечения не полностью исчезает из организма и, в определённых условиях, вновь вызывает появление симптомов заболевания.

Внутриутробные инфекции (ВУИ) — это различные инфекционные заболевания эмбриона, плода и новорождённого, заражение которыми происходит внутриутробно и в процессе родов. Возбудителями инфекции могут быть вирусы, бактерии и (реже) паразиты. Путь передачи — вертикальный, от матери к плоду.

Профессиональные инфекции – Инфекционные заболевания, возникновение которых связано с производственной деятельностью.

Профессиональные группы риска: животноводы, заготовители кормов, ветеринары, работники мясокомбинатов, молокозаводов, предприятий по обработке кожи и меха.

Заражения – через ЖКТ, поврежденные кожу или слизистые, через легкие, через переносчиков (клещи, кровососущие насекомые). Имеет сезонный характер.

Профилактика: механизация процессов, утилизация отходов животного происхождения, СИЗ, личная гигиена.

3. На прибывшем в порт судне обнаружены трупы грызунов. Наметить план лабораторной индикации возбудителя, противоэпидемических мероприятий.

В результате того, что грызуны являются переносчиками опасных инфекций (чума, лептоспироз, трихофития, микоспория, и др.) необходимо провести вскрытие и взять мазки-отпечатки с различных органов и тканей.

Далее провести лабораторную диагностику данных мазков (микроскопическую, бактериологическую) и отметить присутствие или отсутствие патогенных микроорганизмов. Данные вскрытия трупа запротоколировать.

Труп животного после вскрытия подлежит уничтожению.

Противоэпидемические мероприятия заключаются в обследование работников судна (при обнаружении возбудителя в грызунах) и дератизации, дезинфекции.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/b52145.html

ПЦР-диагностика: на чем основана, как делают, биоматериал и подготовка, для каких болезней подходит?

ПЦР ДИАГНОСТИКА. ПРОБОПОДГОТОВКА: ПЦР в диагностике инфекционных болезней ПЦР - метод молекулярной

ПЦР (полимеразная цепная реакция) – достижение молекулярной биологии, одна из главных методик клинической лабораторной диагностики конца 20-го и начала 21-го веков, приносящая огромную пользу в различных областях медицинской науки.

Многие люди путают ее с ИФА (иммуноферментный анализ), что, в общем-то, понятно. Они в чем-то схожи, поскольку выполняют одну задачу – поиск причины патологических состояний, обусловленных проникновением в организм человека инфекционных агентов.

Однако между ними есть и различия.

ИФА, например, ищет следы пребывания микроорганизмов, то есть, антитела (АТ), а ПЦР находит «святая святых» возбудителя – ДНК или РНК (нуклеиновые кислоты), дающих жизнь чуждым человеческому телу микроскопическим существам.

Методам ПЦР доступны нуклеиновые кислоты «врага», находящиеся во всех биологических жидкостях и тканях организма, поэтому данный анализ не обязывает использовать в качестве исследования только венозную кровь, можно взять слюну, выделения из половых путей, мокроту или другую среду, несущую информацию о заболевании. Выбор материала для исследования остается за врачом, который предполагает ту или иную патологию и знает, какая среда в таких случаях более информативна.

В чем суть полимеразной цепной реакции?

ПЦР-исследование – это достижение и огромная заслуга молекулярной биологии.

Это – метод, который, обнаружив микроучастки ДНК или РНК  чужеродного генетического материала (генома), способен распознать индивидуальные характеристики, присущие только одному виду микроорганизмов, не спутав его ни с каким другим. Как же работает метод ПЦР и как ему удается восстановить картину поведения инфекционной клетки в живом организме?

процесс проведения ПЦР

Итак, фрагмент нуклеиновой кислоты найден, но он один и для проведения реакции его явно недостаточно, поэтому он кодируется (копирование).

Однако для дальнейшего процесса необходимо большое количество таких микроучастков, что может обеспечить его размножение путем достраивания новых, идентичных найденному фрагменту, участков ДНК (репликация).

Размножение является естественным и неотъемлемым свойством нуклеиновой кислоты, которая будет реплицироваться с помощью фермента полимеразы даже вне живого организма (в пробирке с пробой), образуя множество клонов, то есть, пойдет цепная реакция.

Клонироваться будут все новые и новые фрагменты, но только те, в которых заинтересован исследователь. Вот почему так важно взять «чистый», без посторонних примесей анализ, а тест проводить очень аккуратно.

Учитывая перечисленные способности полимеразной цепной реакции, можно догадаться, почему она так легко отличает уреаплазму от микоплазмы, или каждую из них от хламидии.

Таким образом, даже если среди миллионов клеток человеческого организма затеряется не сам живой вирус, а лишь частица его ДНК, то ПЦР, если ей ничто не помешает, пожалуй, справится с задачей и сообщит о пребывании «чужака» положительным результатом. В этом суть ПЦР и ее основное достоинство.

Достоинства и недостатки

К лаборатории, осуществляющей ПЦР-диагностику, предъявляются высочайшие требования в плане оборудования, тест-систем и квалификации медицинского персонала.

Это высокотехнологичная лаборатория, располагающая арсеналом высокочувствительных и высокоспецифичных реагентов, поэтому особых недостатков она не имеет.

Разве что выдает положительный результат при отсутствии клинических проявлений и тем самым ставит лечебника перед дилеммой: стоит начинать лечение или нет?

Врач, наблюдающий пациента, начинает сомневаться в достоверности результатов тестирования, поскольку никаких признаков заболевания не видит.

Но все же, учитывая высокую чувствительность ПЦР-системы, следует помнить, что она обнаруживает возбудителя даже в доклинической стадии, а положительный результат в таком случае является скорее достоинством, чем недостатком.

Исходя из этого, лечащий врач должен сам принять решение о целесообразности терапии, взяв во внимание и другие аргументы «за» и «против».

Преимущества диагностики с помощью полимеразной цепной реакции очевидны:

  • Высокая специфичность, достигающая 100%, обусловленная присутствием в отобранном образце частиц нуклеиновых кислот, присущих конкретному организму, но чужеродных человеку;
  • Высокая производительность, ведь ПЦР – высокотехнологичная автоматизированная методика, предоставляющая возможность проведения тестирования в день забора материала и избавления, таким образом, пациента от лишних треволнений;
  • ПЦР, работая над одной пробой, способна провести несколько исследований и обнаружить несколько возбудителей, если ей будет такое задание. Например, при диагностике хламидийной инфекции, где ПЦР относится к основным методам, наряду с хламидией, можно обнаружить и нейссерию (гонококк) – возбудитель гонореи. Причем, на достоверности результатов это негативно не отражается;
  • Тестирование методом ПЦР выявляет опасные микроорганизмы в инкубационном периоде, когда они еще не успели нанести ощутимый вред организму, то есть, ранняя диагностика предупреждает о грядущем развитии патологического процесса, что дает возможность подготовиться к нему и принять во всеоружии.

Кроме этого, во избежание недоразумений, иной раз возникающих при диагностике, ПЦР защищает себя еще и тем, что ее результаты могут  зафиксироваться (фотография, компьютер) с целью использования их в экспертных целях, если будет на то необходимость.

Нормой в ответах ПЦР считают отрицательный результат, указывающий на отсутствие фрагментов чужеродных нуклеиновых кислот, положительный ответ будет свидетельствовать о наличии инфекции в организме, цифровые значения означают состояние вируса и его концентрацию на момент тестирования. Однако полную расшифровку анализа осуществляет врач, прошедший специальную учебу по теме «ПЦР». Пытаться же интерпретировать результаты самостоятельно не имеет никакого смысла, поскольку можно, что скорее всего и произойдет, неправильно понять и начать заранее волноваться.

Чего «боится» ПЦР, что она умеет и как к ней подготовиться?

Как в любых других исследованиях, иной раз результаты теста оказываются ложноположительными или ложноотрицательными, где ПЦР исключением не является. Подобное может происходить в случаях:

  1. Нарушения технологического процесса на одном из этапов реакции;
  2. Несоблюдения правил забора материала, его хранения или транспортировки;
  3. Присутствие посторонних примесей в материале.

Это говорит о том, что к ПЦР – диагностике инфекций нужно подходить внимательно, осторожно и аккуратно, иначе образцы материала могут поменять свое структурное строение или вовсе разрушиться.

Этапы ПЦР-диагностики. Ложные результаты могут дать нарушения на любом из этапов исследования

ПЦР-диагностика инфекций относится к категории «золотых стандартов» среди других лабораторных методов, поэтому ее можно применить для поиска возбудителей многих заболеваний, на первый взгляд не имеющих ничего общего между собой:

  • Туберкулез различной локализации, пневмония (в том числе и атипичная, вызванная хламидией);
  • Детские инфекции (коревая краснуха, паротит, корь);
  • Дифтерия;
  • Сальмонеллез;
  • Зоонозная инфекционная болезнь – листериоз (заболевание характеризуется многообразием симптомов с поражением лимфоузлов, ЦНС, внутренних органов);
  • Заболевания, обусловленные проникновением вируса Эпштейн-Барра (инфекционный мононуклеоз и др.);
  • Онкологическая патология, спровоцированная папилломовирусной инфекцией (ВПЧ и его типы);
  • Боррелиоз (болезнь Лайма, клещевой энцефалит);
  • Хеликобактерная инфекция, возбудителем которой является проживающий в желудке человека микроб Helicobacter pylori. Доказано, что хеликобактер становится причиной развития рака желудка или 12-перстной кишки;
  • Кандидоз и практически все ЗППП.

ПЦР-диагностика инфекций, передающихся половым путем, имеет особую значимость, поскольку заболевания, вызванные таким образом, часто длительное время протекают без каких бы то ни было клинических проявлений, зато при беременности начинают активизироваться и, таким образом, угрожать здоровью и даже жизни ребенка. Аналогично себя ведут и TORCH- инфекции. Некоторые из них («торч») относятся одновременно и к ИППП, поэтому последние требуют более подробного рассмотрения. Ознакомиться с самыми популярными методиками читатель сможет в следующих разделах статьи.

Как правильно подготовиться, чтобы получить достоверный результат?

Сразу заметим, что подготовка к ПЦР довольно простая, никаких особых усилий со стороны пациента не требующая. Нужно лишь выполнить три несложных задания:

  1. Не иметь половых контактов за 24 часа до того, как сдать анализ;
  2. Для забора и анализа крови из вены нужно прийти на голодный желудок, пить, кстати, тоже нельзя;
  3. Сдать мочу следует ночную (утром – в стерильную баночку, приобретенную накануне в аптеке).

Пцр может работать в любой биологической среде

Метод ПЦР не отличается «кровожадностью», поэтому приемлет любую биологическую среду, содержащую предполагаемый инфекционный агент.Обычно выбор – что нужно взять для исследования, остается за врачом.

Таким образом, в поисках возбудителя, кроме анализа крови (хотя он тоже подходит и в большинстве случаях берется параллельно другому материалу), можно использовать:

  • Мазок (выделения урогенитального тракта);
  • Соскоб слизистых ротовой полости, конъюнктивы, носоглотки, половых путей (у женщин берут из шейки матки и влагалища, у мужчин – из уретры);
  • Слюну;
  • Сперму;
  • Сок предстательной железы;
  • Ткани плаценты и амниотиотическую жидкость (околоплодные воды);
  • Осадок мочи (после центрифугирования), например, для выявления некоторых ИППП и микобактерий туберкулеза;
  • Мокроту и плевральную жидкость с той же целью;
  • Экссудаты;
  • Спинномозговую жидкость при подозрении на инфекционное поражение ЦНС;
  • Биопсийный материал (биоптат), взятый из печени, 12-перстной кишки, желудка и пр.

К вышеперечисленному хочется добавить, что материала для тестирования во всех случаях, даже в соскобах и выделениях, будет достаточно, так как тестирование методом ПЦР больших объемов не требует, анализу  хватает и нескольких микролитров, которые обычно берут в микропробирку типа «эппендорф» и отправляют на исследование.

ВИЧ и полимеразная цепная реакция

Обычно при прохождении анонимного обследования в случае положительных результатов иммуноблотинга, диагностику ВИЧ-инфекции повторяют заново. Если диагноз подтверждается, пациенту назначают дополнительные исследования:

  1. Определение с помощью иммунологических реакций абсолютных значений количества лимфоцитов CD4 (иммунокомпетентные клетки – Т-хелперы или помощники), которые инфекция поражает в первую очередь, после чего они теряют свои основные свойства и не могут отличить «свое» и чужое». Циркулирующую в плазме крови РНК вируса они принимают за нормальные клетки организма и не реагируют на них;
  2. Обнаружение РНК вируса методом ПЦР и расчет концентрации вирусных частиц с целью установления стадии, тяжести патологического процесса и прогноза с учетом этих данных. Разумеется, слово «норма» в этом плане не существует, поскольку реакция всегда положительна, а расшифровка цифровых значений находится в компетенции врача.

ПЦР и гепатиты

Методом ПЦР можно выявлять возбудителей гепатитов, чаще всего тест используется для диагностики С гепатита, который плохо определяется другими методами.

Вирус гепатита С (РНК-содержащий) по своему поведению в организме человека напоминает ВИЧ. Вклиниваясь в геном клеток печени (гепатоцитов), он пребывает там в ожидании своего часа, который может наступить хоть через 2 года, хоть через 20 лет, поэтому медики прозвали его «ласковым убийцей».

Гепатит С приводит к формированию злокачественного процесса в печеночной паренхиме, который проявляется на поздних стадиях. Все эти события иммунная система не замечает, принимая вирус за гепатоцит. Правда, антитела к вирусу в некоторых количествах вырабатываются, однако они не обеспечивают достойный иммунный ответ.

Для диагностики ИФА на гепатит С не очень информативен, поскольку указывает на то, что вирус оставил следы, а ушел ли сам – неизвестно. При ВГС известны случаи самоизлечения, в то время как антитела против вируса остаются и продолжают циркулировать пожизненно (иммунологическая память).

ПЦР заметно опережает образование антител и может выявить вирусную частицу уже через 1-1,5 недели, в то время как АТ могут появиться в интервале от 2 месяцев до полугода

ПЦР-диагностика в случае подозрения на разгул вируса гепатита С в организме человека является наиболее оптимальным методом исследования, ибо только она способна распознать присутствие «ласкового врага» в крови или биоптате печени пациента.

Однако иной раз имеют место случаи, когда АТ положительны, а результат ПЦР – отрицательный. Такое иногда происходит при очень низком количестве вируса или при его «дремлющем» состоянии в печени без выхода в кровяное русло. Чтобы все-таки найти истину, у пациента берут повторный анализ, а то и не один.

Папилломовирусная инфекция

ВПЧ (вирус папилломы человека), если не произойдет самоизлечение, тоже может, ничем себя не проявляя, долго персистировать в организме хозяина, который об этом даже не подозревает, поскольку ПЦР сделать не доводилось, а симптомы болезни отсутствовали. Однако наличие папилломовирусной инфекции, пусть и латентной, далеко не безразлично для здоровья человека, где особую опасность несут определенные типы вируса, вызывающие онкологические заболевания (типы 16, 18).

Чаще от ВПЧ страдает женская половина населения, так как вирус больше любит женскую половую сферу, а особенно – шейку матки, где некоторые типы вирусов способствуют развитию диспластических процессов, а затем и рака шейки матки, если не лечить дисплазию и дать волю вирусу. Так вот, полимеразная цепная реакция обнаружит вирусную ДНК, а затем укажет «плохой» или «хороший» (онкогенный или неонкогенный) тип поселился в организме женщины.

Другие ИППП и TORCH-инфекции

Очевидно, что полимеразная цепная реакция может найти любую чужеродную структуру, состоящую из нуклеиновых кислот, поэтому данный тест подходит для выявления всех ЗППП и TORCH-инфекций, тем не менее, он далеко не всегда используется. Зачем, скажем, проводить такие дорогие исследования для обнаружения трихомонады или гонококка, если есть более доступные и дешевые?

TORCH-инфекции и ИППП настолько взаимосвязаны, что, порой, трудно определить, к какой группе следует отнести тот или иной возбудитель.

В них вообще бывает сложно разобраться, так как это довольно разнообразные группы микроорганизмов, которые могут передаваться половым путем всегда или только при определенных условиях (иммунодефицит), а могут представлять интерес лишь при беременности, ввиду возможного негативного влияния на ее течение и на плод.

ПЦР – главный метод обнаружения скрытых инфекций

В основе развития клинических проявлений лежат разные возбудители, найти которые бывает под силу только ПЦР, что и является ее основной задачей иногда совместно с ИФА, а иногда в качестве единственного подтверждающего теста, особенно, если симптоматика заболевания отсутствует. Такую непростую ситуацию может создавать полимикробная инфекция, которая, помимо явных возбудителей, включает еще и условно-патогенные.

У мужчин, страдающих воспалительными заболеваниями половой сферы, например, уретритом, часто выявляют хламидию, уреаплазму и микоплазму. Эти же виды несут опасность и женскому организму.

Те, кто знает коварство хламидии и сталкивался с ней, наверняка помнят, как тяжело бывает ее найти и распознать, поэтому анализу, произведенному методом ПЦР на хламидии, особенно доверяют, ведь спрятавшийся в клетке очень маленьких размеров паразит ведет себя осторожно, а вред наносит всегда исподтишка.

Уреаплазма зачастую рассматривается в паре с микоплазмой. И это неспроста.

Данные виды, как и хламидию, не относят ни к вирусам, ни к бактериям, они проживают внутри клеток и относятся к ИППП, хотя их присутствие в здоровом организме тоже далеко не редкость.

Так вот, чтобы отличить здорового носителя от больного человека, нужны особые методы, где ПЦР считается наиболее надежным, поскольку, ввиду особенностей строения и поведения этих микроорганизмов, другие исследования оказываются неэффективными.

Что касается вируса герпеса (тип 1, 2) и цитомегаловируса, который тоже относится к герпесвирусам (тип 5), то здесь тоже ситуация неоднозначная.

Инфицированность населения земного шара приближается к 100%, поэтому в данном случае очень важна идентификация вируса и его доза, что особенно играет роль при беременности, ведь взрослому человеку, вирус, прижившийся в его организме, часто не доставляет никаких хлопот и признаков заболевания не дает.

Поэтому не следует игнорировать назначенное врачом подобное обследование, ведь в некоторых случаях полимеразная цепная реакция является обязательным и необходимым методом лабораторной диагностики, способным защитить от серьезных осложнений не только женщину, но и маленького, еще не родившегося, человечка.

В заключение хочется отметить, что такой замечательный метод, как ПЦР, вот уже более 30 лет служит человечеству. При этом, задачи теста не ограничиваются поиском возбудителей инфекционных заболеваний.

Полимеразная цепная реакция, рожденная на почве молекулярной биологии, неразрывно связана с генетикой, она успешно применяется в криминалистике для идентификации личности, в судебной медицине для установления отцовства, в ветеринарии, если клиника для животных имеет возможности приобретать дорогое оборудование, а также в других сферах (промышленность, сельское хозяйство и пр.).

: ПЦР – суть и применение

Источник: https://izppp.ru/analizy/pcr/

Молекулярно-генетические методы диагностики инфекционных болезней

ПЦР ДИАГНОСТИКА. ПРОБОПОДГОТОВКА: ПЦР в диагностике инфекционных болезней ПЦР - метод молекулярной

Полимеразная цепная реакцияпозволяет обнаружить микроб в ис­следуемом материале (воде, продуктах, ма­териале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследу­емого материала выделяют ДНК, в которой определяют наличие специфичного для дан­ного микроба гена. Обнаружение гена осу­ществляют его накоплением. Для этого необ­ходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следую­щим образом.

Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомо­го гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды.

Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в резуль­тате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом ко­личество ДНК гена будет увеличиваться каждый раз вдвое.

Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ.Данный метод основан на применении фер­ментов, носящих название рестриктаз.

Рестриктазы представляют собой эндонук-леазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов.

Особое значение для методов мо­лекулярной генетики имеют рестриктазы, кото­рые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относи­тельно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может про­исходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической еди­ницы находится строго определенное (генети­чески задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго опреде­ленного количества фрагментов ДНК фикси­рованного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашива­ют бромистым этидием и фотографируют в УФ-излучении. Таким образом, можно полу­чить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, вы­деленных из различных штаммов, можно оп­ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергну­тые мутациям.

Этот метод используется также как началь­ный этап метода определения последователь­ности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизациипозволяет выявить степень сходства раз­личных ДНК. Применяется при идентифи­кации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондомназывается одноцепочечная мо­лекула нуклеиновой кислоты, меченная ра­диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, со­держащий радиоактивный зонд. Создаются ус­ловия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу­ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК.Последовательность нуклеотидных основа­ний в оперонах, кодирующих рРНК, отлича­ется консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких ко­пиях.

Фрагменты ДНК, полученные после об­работки ее рестриктазами, содержат последо­вательности генов рРНК, которые могут быть обнаружены методом молекулярной гибри­дизации с меченой рРНК соответствующего виды бактерий.

Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штам­мов и определение их вида.

В настоящее вре­мя риботипирование проводится в автомати­ческом режиме в специальных приборах.

Опосредованная транскрипцией амплифика­ция рРНКиспользуется для диагностики сме­шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб­ридизации амплифицированных рРНК, спе­цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице вы­деленной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммунофермент-ного анализа (ИФА).

Реакция проводится в автоматическом ре­жиме в установках, в которых одномоментное определение рРНК, принадлежащих различ­ным видам бактерий, достигается разделе­нием амплифицированного пула рРНК на несколько проб, в которые вносятся компле­ментарные видоспецифическим рРНК мече­ные олигонуклеотиды для гибридизации.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/10_129759_molekulyarno-geneticheskie-metodi-diagnostiki-infektsionnih-bolezney.html

Medic-studio
Добавить комментарий