Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

Содержание
  1. Повреждающее действие ионизирующих излучений
  2. § 41. Общая характеристика повреждающего действия ионизирующих излучений
  3. § 42. Механизмы действия ионизирующих излучений на живые организмы
  4. § 43. Лучевая болезнь
  5. § 44. Патогенез лучевого поражения организма
  6. Разрушительное действие радиации на организм человека
  7. В чем суть радиации?
  8. Последствия действия радиации на организм человека
  9. Подробнее о том, как радиация влияет на организм человека
  10. Как обезопасить себя от излишних доз радиации?
  11. Особенности ионизирующего излучения при действии на живой организм
  12. Памятка по индивидуальной защите
  13. Ионизирующее излучение, последствия для здоровья и защитные меры
  14. Ионизирующее излучение: виды и действие на организм человека
  15. Что такое ионизирующее излучение?
  16. Откуда берется излучение?
  17. Что происходит с человеком при ионизирующем излучении?
  18. Биологические изменения при действии лучей
  19. Чем грозит попадание под влияние ионизирующих лучей?
  20. Лучевая болезнь
  21. Как защититься от облучения?
  22. 1. Ионизирующее излучение. Общая характеристика

Повреждающее действие ионизирующих излучений

Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

Глава 5. Повреждающее действие ионизирующих излучений

§ 41. Общая характеристика повреждающего действия ионизирующих излучений

Ионизирующее излучение действует на организм как из внешних, так и из внутренних источников облучения. В последнем случае радиоактивные вещества поступают в организм с пищей, водой, через кожные покровы. Возможно комбинированное действие внешнего и внутреннего облучения.

Повреждающее действие различных видов ионизирующей радиации зависит от их проникающей активности и, следовательно, от плотности ионизации в тканях. Чем короче путь прохождения луча, тем больше плотность ионизации и сильнее повреждающее действие (табл. 5).

Таблица 5. Проникающая способность и плотность ионизации различных видов излучений с энергией в 2 МэВ
Тип излученияДлина пробега в воздухе, мПлотность ионизации (число ионов в 1 мкл)
Альфа-излучение0,016000
Бета-излучение106
Гамма-квантыОколо 6000.1
Таблица 6. Коэффициенты относительной биологической эффективности – ОБЭ
Рентгеновские и гамма-лучи1
Бета-излучение1
Альфа-излучение10
n (нейтроны быстрые и медленные)5-20
р (протоны)10
Таблица 7. Зависимость повреждения от интенсивности общего облучения (Горизонтов П. Д., I960)
Вид животногоМинимальная смертельная доза, РДоза половинной выживаемости, ЛД50Абсолютная смертельная доза
Мыши200350-400550-800
Крысы250-300450-600650-800
Морские свинки200-300400
Кролики80011001400
Кошки550
Собаки275400600
Обезьяны (макаки)600-700
Примечание. Условия облучения: рентгеновские лучи, 180 кВ, 10 мА, фильтр 0,5 мм Сu+ и 1 мм А1; мощность дозы 13-60 Р/мин.

Однако одинаковые количества поглощенной энергии дают часто разный биологический эффект в зависимости от вида ионизирующего излучения.

Поэтому для сценки степени повреждающего действия ионизирующей радиации на биологические объекты пользуются коэффициентом относительной биологической эффективности – ОБЭ. Как видно из табл.

6, повреждающее действие альфа-излучения, нейтронов и протонов в 10-20 раз больше, чем рентгеновских лучей, биологическое действие которых условно принято за 1.

Следует только помнить, что коэффициенты эти условны. Результат также зависит от выбора показателя, который берется для сравнения биологической эффективности. Например, ОБЭ можно устанавливать по проценту смертности, по степени гематогенных изменений, по стерилизующему действию на половые железы и т. д.

Реакция организма на ионизирующее излучение зависит от величины экспозиционной дозы, выражаемой в рентгенах (Р) и поглощенной дозы, выражаемой в радах (рад), в единицах СИ (Гй).

Степень тяжести радиационного поражения зависит не только от дозы излучения, но и от длительности воздействия (мощности дозы).

Повреждающее действие ионизирующей радиации при кратковременном облучении более выражено, чем при длительном облучении в одной и той же дозе.

При дробном (фракционированном) облучении наблюдается снижение биологического эффекта: организм может переносить облучение в более высоких суммарных дозах.

Индивидуальная реактивность и возраст имеют также большое значение в определении тяжести радиационного поражения.

В опытах на животных обнаружены широкие колебания индивидуальной чувствительности – одни собаки выживают после однократного облучения в дозе 600 Р, другие погибают после облучения в дозе 275 Р.

Молодые и беременные животные более чувствительны к ионизирующему облучению. Старые животные также менее резистентны вследствие ослабления у них процессов регенерации.

§ 42. Механизмы действия ионизирующих излучений на живые организмы

Процессы взаимодействия ионизирующего излучения с веществом в живых организмах приводят к специфическому биологическому действию, завершающемуся повреждением организма. В процессе этого повреждающего действия условно можно выделить три этапа: а) первичное действие ионизирующего излучения; б) влияние радиации на клетки; в) действие радиации на целый организм.

Первичным актом этого действия является возбуждение и ионизация молекул, в результате чего возникают свободные радикалы (прямое действие излучения) или начинается химическое превращение (радиолиз) воды, продукты которого (радикал ОН, перекись водорода – Н202 и др.) вступают в химическую реакцию с молекулами биологической системы.

Первичные процессы ионизации не вызывают больших нарушений в живых тканях. Повреждающее действие излучения связано, по-видимому, со вторичными реакциями, при которых происходит разрыв связей внутри сложных органических молекул, например SH-групп в белках, хромофорных групп азотистых оснований в ДНК, ненасыщенных связей в липидах и пр.

Влияние ионизирующего излучения на клетки обусловлено взаимодействием свободных радикалов с молекулами белков, нуклеиновых кислот и липидов, когда вследствие всех этих процессов образуются органические перекиси и возникают быстропреходящие реакции окисления.

В результате перекисного окисления накапливается множество измененных молекул, в результате чего начальный радиационный эффект многократно усиливается. Все это отражается прежде всего на структуре биологических мембран, меняются их сорбционные свойства и повышается проницаемость (в том числе мембран лизосом и митохондрий).

Изменения в мембранах лизосом приводят к освобождению и активации ДНК-азы, РНК-азы, катепсинов, фосфатазы, ферментов гидролиза мукополисахаридов и ряда других ферментов.

Высвобождающиеся гидролитические ферменты могут путем простой диффузии достичь любой органеллы клетки, в которую они легко проникают благодаря повышению проницаемости мембран.

Под действием этих ферментов происходит дальнейший распад макромолекулярных компонентов клетки, в том числе нуклеиновых кислот, белков.

Разобщение окислительного фосфорилирования в результате выхода ряда ферментов из митохондрий в свою очередь приводит к угнетению синтеза АТФ, а отсюда и к нарушению биосинтеза белков.

Таким образом, в основе радиационного поражения клетки лежит нарушение ультраструктур клеточных органелл и связанные с этим изменения обмена веществ.

Кроме того, ионизирующая радиация вызывает образование в тканях организма целого комплекса токсических продуктов, усиливающих лучевой эффект – так называемых радиотоксинов.

Среди них наибольшей активностью обладают продукты окисления липидов- перекиси, эпоксиды, альдегиды и кетоны.

Образуясь тотчас после облучения, липидные радиотоксины стимулируют образование других биологически активных веществ – хинонов, холина, гистамина и вызывают усиленный распад белков. Будучи введенными необлученным животным, липидные радиотоксины оказывают действие, напоминающее лучевое поражение. Ионизирующее излучение оказывает наибольшее воздействие на ядро клетки, угнетая митотическую активность.

Ионизирующее излучение действует на клетки тем сильнее, чем они моложе и чем менее дифференцированны.

На основании морфологических признаков поражаемости органы и ткани распределяются в следующем нисходящем порядке: лимфоидные органы (лимфатические узлы, селезенка, зобная железа, лимфоидная ткань других органов), костный мозг, семенники, яичники, слизистая оболочка желудочно-кишечного тракта.

Еще меньше поражаются кожа с придатками, хрящи, кости, эндотелий сосудов. Высокой радиоустойчивостью обладают паренхиматозные органы: печень, надпочечники, почки, слюнные железы, легкие.

Повреждающее действие ионизирующего излучения на клетки при достаточно высоких дозах завершается гибелью.

Гибель клетки в основном является результатом подавления митотической активности и необратимого нарушения хромосомного аппарата клетки, но возможна и интерфазная гибель (вне периода митоза) из-за нарушения метаболизма клетки и интоксикации упомянутыми выше радиотоксинами. В результате происходит опустошение тканей из-за того, что не восполняется естественная убыль клеток за счет образования новых.

Гибель клеток и опустошение тканей играют важную роль в развитии общих поражений организма от ионизирующего излучения – лучевой болезни.

§ 43. Лучевая болезнь

При местном воздействии ионизирующей радиации в зависимости от дозы облучения возникают различные изменения, начиная от явлений преходящих расстройств кровообращения вплоть до развития радиационных ожогов и некрозов.

После внешнего равномерного облучения организма в зависимости от дозы полученного воздействия возникают поражения от едва уловимых общих реакций до острых форм лучевой болезни.

При равномерном облучении в дозах 100-1000 Р развивается острая лучевая болезнь с преимущественным поражением костного мозга.

В диапазоне доз 1000-2000 Р возникает кишечная, в дозах 2000-8000 Р – токсемическая (сосудистая) и в дозах выше 8000 Р – церебральная форма лучевой болезни [Источник: “Инструкция по диагностике, медицинской сортировке и лечению острых радиационных поражений” (М3 СССР, А. И. Бурназян, 1978)].

Костно-мозговая форма острой лучевой болезни с преимущественным поражением кроветворной системы представляет собой наиболее типичную форму лучевой болезни. В ее течении выделяют 4 периода:

  1. первичная реакция (кратковременная);
  2. скрытый период (период мнимого благополучия);
  3. период разгара болезни;
  4. период восстановления.

Первичная реакция обычно наблюдается, если доза облучения превышает 200 Р. Возникает сразу после облучения и длится от нескольких часов до 1-2 сут. В это время характерны некоторое возбуждение, головная боль. Затем наступают диспепсические расстройства. Со стороны крови – кратковременный нейтрофильный лейкоцитоз, лимфопения.

В механизме развития лучевой болезни наряду с прямым повреждающим действием ионизирующего излучения на клетки ведущее значение имеет включение в этот процесс нервных и гормональных механизмов регуляции функций организма.

В начальном периоде лучевой болезни характерна повышенная возбудимость нервной системы, отсюда некоторая лабильность (неустойчивость) вегетативных функций – колебания артериального давления, ритма сердца и т. д.

Активация гипофиз-адреналовой системы приводит к усиленной секреции гормонов, коры надпочечников, что в данной ситуации может иметь приспособительное значение.

Скрытый период болезни характеризуется улучшением общего состояния больных вплоть до кажущегося благополучия. Продолжительность латентного периода зависит от дозы полученного облучения.

При сравнительно небольших дозах (25-100 Р) начальные легкие функциональные реакции не переходят в развернутую клиническую картину (т. е. в 3-й период болезни) и заболевание ограничивается затухающими явлениями начальных реакций.

При облучении в средних дозах (150-250 Р) латентный период продолжается 2-2,5 нед. При больших дозах (300-500 Р) латентный период сокращается до 3-10 дней.

В это время продолжают нарастать изменения в системе кроветворения- лейкоцитоз сменяется лейкопенией, нарастает лимфопения затем появляются тромбоцитопения и другие изменения системы крови. Все это является результатом непосредственного повреждения клеток радиочувствительных органов – костного мозга и лимфоидного аппарата.

В период разгара болезни состояние больного вновь ухудшается – нарастает общая слабость, повышается температура тела, появляется кровоточивость, в результате чего на коже и слизистых возникают кровоизлияния, в тяжелых случаях они возможны и в сердце, и в головном мозге.

Характерно истощение гемопоэза, в тяжелых случаях до полного опустошения кроветворной системы вследствие гибели стволовых клеток. Количество лейкоцитов и тромбоцитов в периферической крови резко падает. Возникает ряд эндокринных нарушений и нарушений функции нервной системы.

Резко снижается иммунитет, в результате чего легко возникают инфекционные заболевания, аутоинфекция и аутоинтоксикация.

Продолжительность периода выраженных клинических проявлений от нескольких дней до 2-3 нед. В наиболее тяжелых случаях больной гибнет на высоте заболевания.

Период восстановления характеризуется постепенной нормализацией нарушенных функций. Температура тела снижается, прекращается кровоточивость, восстанавливается кроветворная функция, нормализуется обмен веществ и т. д.

При благоприятной ситуации болезнь излечивается полностью. При неполном восстановлении функции кроветворения возможен переход болезни в хроническую форму.

Кишечная форма острой лучевой болезни возникает при облучении подопытных животных в сверхсмертельных дозах (1000-2000 Р). Смерть животных наступает на 3-5-е сутки после облучения. На вскрытии можно видеть гибель основной массы кишечного эпителия и оголение (денудацию) ворсинок, их уплощение и даже полную деструкцию.

У человека в случае облучения в сверхсмертельных дозах смерть наступает на 7-10-е сутки. Для этой формы лучевой болезни характерны интенсивная рвота, тенезмы в день облучения, в дальнейшем – кровавый понос, повышение температуры тела, явления сепсиса, типичные для лучевого поражения изменения крови.

Для токсемической формы характерны тяжелые гемодинамические нарушения, парез сосудов и распад тканей, общая интоксикация, олигурия, гиперазотемия. Смерть наступает на 4-7-е сутки.

Церебральная форма острой лучевой болезни возникает при облучении очень большими дозами – выше 8000 Р. Смертельный исход при этом может произойти даже в ходе самого облучения или через несколько минут (или часов) после воздействия – так называемая “смерть под лучом”.

Эта форма радиационного поражения характеризуется судорожнопаралитическим синдромом, нарушением сосудистого тонуса (понижение артериального давления) и терморегуляции, возникающим в момент облучения либо в первые часы после него. Несколько позднее появляются функциональные нарушения пищеварительной и мочевыделительной системы.

Причиной смерти при церебральной форме острой лучевой болезни является гибель клеток коры головного мозга и нейронов ядер гипоталамуса. В поражении нервной системы главное значение имеет непосредственное повреждающее действие ионизирующей радиации на ткани. По-видимому, существенную роль играют и образующиеся в тканях радиотоксины.

§ 44. Патогенез лучевого поражения организма

Патогенез лучевого поражения организма представляется очень сложным процессом. Начальным звеном поражения является непосредственное действие радиации на клетки радиочувствительных тканей. Наряду с этим первичным процессом с самого начала лучевого поражения организма возникают изменения функции интегративных регулирующих систем, прежде всего нервной, позже эндокринной.

В начальные фазы лучевой болезни, когда происходит ионизация воды и макромолекул, возбуждаются интерорецепторы сосудов и тканей в результате изменения внутренней среды. Расстройства функции центральной нервной системы проявляются в нарушениях условнорефлекторных связей, ослаблении внутреннего торможения.

В дальнейшем меняются функции подкорковых центров, нарушается терморегуляция, регуляция тонуса сосудов, сердечного ритма и др. Функциональные изменения в нервной системе обнаруживаются в ранние сроки развития лучевой болезни и при облучении организма в малых дозах, хотя структурные нарушения в ней выражены не так резко, как, например, в костном мозге и в кишечной стенке.

Однако если облучение происходит в сверхсмертельных дозах, в нервной системе возникают и структурные нарушения.

Под влиянием ионизирующего излучения в той или иной мере нарушаются функции всех желез внутренней секреции. Наиболее выраженные изменения наблюдаются в половых железах, гипофизе, надпочечниках.

Эти изменения зависят от дозы излучения и могут проявляться как усилением секреции, так и угнетением ее. Большее значение, по-видимому, имеет нарушение обычной согласованности в секреции различных эндокринных желез.

Нарушение функции гипофиза ведет к разнообразным вторичным реакциям вследствие уменьшения выработки тройных гормонов и соответствующих гормонов периферических эндокринных желез.

Особенно важна для организма недостаточность функции надпочечников, резко снижающая реактивность и устойчивость ко всевозможным повреждающим воздействиям внешней среды, в том числе и к возбудителям инфекционных заболеваний.

Продолжение: Глава 6. Повреждающее действие лучей солнечного спектра

К оглавлению

Источник: http://bono-esse.ru/blizzard/A/Fiziologija/Ado/03-05_ion_izluchenie.html

Разрушительное действие радиации на организм человека

Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

Ученые, изучающие влияние радиации на живые организмы, серьезно обеспокоены ее широким распространением. Как сказал один из исследователей, современное человечество купается в океане радиации.

Невидимые глазу радиоактивные частицы обнаруживают в почве и воздухе, воде и пище, детских игрушках, нательных украшениях, строительных материалах, антикварных вещах.

Самый безобидный на первый взгляд предмет может оказаться опасным для здоровья.

Наш организм также можно назвать в небольшой степени радиоактивным. В его тканях всегда содержатся необходимые ему химические элементы – калий, рубидий и их изотопы. В это сложно поверить, но каждую секунду в нас происходят тысячи радиоактивных распадов!

В чем суть радиации?

Атомное ядро состоит из протонов и нейтронов. Их компоновка у некоторых элементов может быть, упрощенно говоря, не совсем удачной, из-за чего они становятся нестабильными. У таких ядер есть лишняя энергия, от которой они стремятся избавиться. Сделать это можно такими способами:

  • Выбрасываются маленькие «кусочки» из двух протонов и двух нейтронов (альфа-распад).
  • В ядре протон превращается в нейтрон, и наоборот. При этом выбрасываются бета-частицы, которые представляют собой электроны или их двойники с противоположным знаком – антиэлектроны.
  • Происходит выброс излишней энергии из ядра в виде электромагнитной волны (гамма-распад).

Кроме этого, ядро может излучать протоны, нейтроны и полностью разваливаться на куски. Таким образом, несмотря на тип и происхождение, любые виды радиации представляют собой высокоэнергетический поток частиц с огромной скоростью (десятки и сотни тысяч километров в секунду). Он очень пагубно действует на организм.

Последствия действия радиации на организм человека

В нашем организме непрерывно продолжаются два противоположных процесса – гибель и регенерация клеток.

В нормальных условиях радиоактивные частицы повреждают в молекулах ДНК до 8 тысяч различных соединений за час, которые организм потом самостоятельно восстанавливает.

Поэтому медики считают, что малые дозы радиации активизируют систему биологической защиты организма. Но большие – разрушают и убивают.

Так, лучевая болезнь начинается уже при получении 1-2 Зв, когда врачи фиксируют ее 1-ую степень. В этом случае необходимы наблюдения, регулярные последующие обследования на предмет онкологических заболеваний.

Доза 2-4 Зв означает уже 2-ую степень лучевой болезни, при которой требуется лечение. Если помощь поступает вовремя, летального исхода не будет.

Смертельной считается доза от 6 Зв, когда даже после пересадки костного мозга удается спасти лишь 10-ую часть больных.

Без дозиметра человек никогда не поймет, что подвергается воздействию опасного излучения. Поначалу тело никак на это не реагирует. Лишь через время может появиться тошнота, начинаются головные боли, слабость, поднимается температура.

При высоких дозах облучения радиация в первую очередь воздействует на кроветворную систему. В ней почти не остается лимфоцитов, от количества которых зависит уровень иммунитета. Вместе с этим растет число хромосомных поломок (дицентриков) в клетках.

В среднем, организм человека не должен подвергаться облучению, доза которого более 1 млЗв в год. При облучении в 17 Зв вероятность развития неизлечимого рака приближается к максимальному значению.

Подробнее о том, как радиация влияет на организм человека

Повреждение атомов клеток. Процесс воздействия радиации на организм называется облучением. Это крайне разрушительная сила, которая трансформирует клетки, деформирует их ДНК, приводит к мутациям и генетическим повреждениям. Деструктивный процесс может запустить всего одна частица радиации.

Действие ионизирующего излучения специалисты сравнивают со снежным комом. Начинается все с малого, затем процесс нарастает до тех пор, пока не наступят необратимые изменения. На атомарном уровне это происходит так.

Радиоактивные частицы летят с огромной скоростью, выбивая при этом электроны из атомов. В результате последние приобретают положительный заряд. «Черное» дело радиации заключается только в этом.

Но последствия таких преобразований бывают катастрофическими.

Свободный электрон и ионизированный атом вступают в сложные реакции, в результате которых образуются свободные радикалы. Например, вода (H2O), составляющая 80 % массы человека, под воздействием радиации распадается на два радикала – H и OH.

Эти патологически активные частицы вступают в реакции с важными биологическими соединениями – молекулами ДНК, белков, ферментов, жиров. В результате в организме растет число поврежденных молекул и токсинов, страдает клеточный обмен.

Через некоторое время пораженные клетки погибают или их функции серьезно нарушаются.

Что происходит с облученным организмом. Из-за повреждения ДНК и мутации генов клетка не может нормально делиться. Это самое опасное последствие радиационного облучения. При получении большой дозы количество пострадавших клеток настолько велико, что могут отказывать органы и системы. Тяжелее всего воспринимают радиацию ткани, в которых происходит активное деление клеток:

  • костный мозг;
  • легкие,
  • слизистая желудка,
  • кишечник,
  • половые органы.

Причем даже слаборадиоактивный предмет при длительном контакте наносит вред организму человека. Так, миной замедленного действия могут стать для вас любимый кулон или объектив фотоаппарата.

Огромная опасность влияния радиации на живые организмы состоит в том, что долгое время она никак себя не проявляет. «Враг» проникает через легкие, ЖКТ, кожу, а человек даже не подозревает об этом.

В зависимости от степени и характера облучения его результатом становятся:

  • острая лучевая болезнь;
  • нарушения работы ЦНС;
  • местные лучевые поражения (ожоги);
  • злокачественные новообразования;
  • лейкозы;
  • иммунные заболевания;
  • бесплодие;
  • мутации.

К сожалению, природа не предусмотрела для человека органов чувств, которые могли бы подавать ему сигналы об опасности при приближении к радиоактивному источнику. Защититься от такой «диверсии» без всегда присутствующего под рукой бытового дозиметра невозможно.

Как обезопасить себя от излишних доз радиации?

От внешних источников защититься проще. Альфа-частицы задержит обычный картонный лист. Бета-излучение не проникает сквозь стекло. «Прикрыть» от гамма-лучей сможет толстый свинцовый лист или бетонная стена.

Хуже всего обстоит дело с внутренним облучением, при котором источник находится внутри организма, попав туда, к примеру, после вдыхания радиоактивной пыли или ужина с «приправленными» цезием грибочками. В этом случае последствия облучения намного более серьезные.

Самая лучшая защита от бытового ионизирующего излучения – своевременное обнаружение его источников. В этом вам помогут бытовые дозиметры RADEX. С такими приборами под рукой жить гораздо спокойнее: в любой момент вы исследуете на радиационное загрязнение все что угодно.

Контролируйте индикатором радиоактивности свою пищу, проверяйте воду и воздух, которым дышите, и вы создадите надежную преграду для проникновения внутрь микроскопических вредоносных частиц.

Источник: https://www.quarta-rad.ru/useful/vse-o-radiacii/deystvie-radiacii-na-organizm/

Особенности ионизирующего излучения при действии на живой организм

Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

При изучении действия излучения на организм были определены следующие особенности:

  1. Высокая эффективность поглощенной энергии.
    Малые количества поглощенной энергии излучения могу вызвать глубокие биологические изменения в организме.
  2. Наличие скрытого, инкубационного, периода проявления действия ионизирующего излучения.
    Этот период часто называют периодом мнимого благополучия. Продолжительность его сокращается при облучении в больших дозах.
  3. Действие от малых доз может суммироваться или накапливаться.
    Этот эффект называется кумуляцией.
  4. Излучение действует не только на данный живой организм, но и на его потомство.
    Это так называемый генетический эффект.
  5. Разные органы живого организма имеют свою чувствительность к облучению.
  6. Не каждый организм в целом одинаково реагирует на облучение.
  7. Облучение зависит от частоты.

Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Известно, что 2/3 общего состава ткани человека составляют вода и углерод; вода под воздействием излучения расщепляется на водород Н и гидроксильную группу ОН, которые, в свою очередь,  образуют продукты с высокой химической активностью: гидратный оксид НО2 и перекись водорода Н2О2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.

Любой вид ионизирующего излучения вызывает биологические изменения в организме, как при внешнем, так и при внутреннем облучении.
Биологический эффект ионизирующего излучения зависит от суммарной дозы и времени воздействия излучения, вида излучения, размера облучаемой поверхности и индивидуальных особенностей организма.

Основные особенности биологического действия ионизирующего излучения на организм человека:

  1. Действие ионизирующих излучений на организм неощутимы человеком.
  2. Видимые поражения кожного покрова, недомогания, характерные для лучевого заболевания, появляются не сразу, а спустя некоторое время.

3. Суммирование доз облучения происходит скрыто. Если в организм человека систематически будут попадать радиоактивные вещества, то со временем дозы суммируются, что неизбежно приводит к лучевым заболеваниям.

Различают две формы лучевой болезни – острую и хроническую.
Острая форма возникает в результате облучения большими дозами в короткий промежуток времени. При дозах порядка тысяч рад поражение организма может быть мгновенным (“смерть под лучом”). Острая лучевая болезнь может возникнуть и при попадании внутрь организма больших количеств радионуклидов.

Первая степень лучевой болезни (легкая) возникает при дозах 100-200 бэр, вторая (средней тяжести) – при дозах 200-300 бэр, третья (тяжелая) – при дозах 300-500 бэр и четвертая (крайне тяжелая) – при дозах более 500 бэр.

Другая форма острого лучевого поражения проявляется в виде лучевых ожогов.

В зависимости от поглощенной дозы имеют место реакции I степени (при дозе выше 500 бэр), II степени (до 800 бэр),  III степени (до 1200 бэр)  и IY степени (при дозе выше 1200 бэр), проявляющиеся в разных формах: от выпадения волос, шелушения и легкой пигментации кожи (I степень ожога) до язвенно-некротических поражений и образования длительно незаживающих трофических язв (IY степень лучевого поражения).

Хронические поражения развиваются в результате систематического облучения дозами, превышающими предельно допустимые (ПДД).
Изменения в состоянии здоровья называются соматическими эффектами, если они проявляются непосредственно у облученного лица, и наследственными, если они проявляются у его потомства.

К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, катаракта хрусталика глаз и сокращение продолжительности жизни.
Лейкемия – относительно редкое заболевание.

Считается, что вероятность возникновения лейкемии составляет 1-2 случая в год на 1 млн. населения при облучении всей популяции дозой 1 бэр.

Первые случаи развития злокачественных новообразований от воздействия ионизирующих излучений описаны в начале ХХ столетия. Это были случаи рака кожи кистей рук у работников рентгеновский кабинетов.

  Описаны случаи развития злокачественных новообразований у шахтеров, подвергавшихся длительному воздействию радиоактивных газов и аэрозолей, содержащихся во вдыхаемом воздухе в количествах, когда суммарная доза воздействия на бронхи достигала 1000 рад.

Развитие катаракт наблюдалось у лиц, переживших атомные бомбардировки в Хиросиме и Нагасаки, у физиков, работавших на циклотронах, у больных, глаза которых подвергались облучению с лечебной целью.

Одномоментальная катарактогенная доза ионизирующей радиации, по мнению большинства исследователей, составляет около 200 бэр. Скрытый период до появления первых признаков развития поражения обычно составляет от 2 до 7 лет.

Сокращение продолжительности жизни в результате воздействия ионизирующей радиации на организм обнаружено в экспериментах на животных (предполагают, что это явление обусловлено ускорением процессов старения и увеличения восприимчивости к инфекциям).

Продолжительность жизни животных, облученных дозами, близкими к летальным, сокращается на 25-30% по сравнению с контрольной группой.  При меньших дозах срок жизни животных уменьшается на 2-4% на каждые 100 рад.

По мнению большинства радиобиологов, сокращение продолжительности жизни человека при тотальном облучении находится в пределах 1-15 дней на 1 бэр.

Памятка по индивидуальной защите

Пребывание человека в зоне радиоактивного загрязнения сопряжено с риском облучения в повышенных дозах. Опасность представляет внешнее и внутреннее облучение.

Внешнее облучение обусловлено радионуклидами, находящимися в окружающей среде (радиоактивное загрязнение территории, оборудования, радиоизотопные источники и т.п.). Представляют опасность бета- и гамма-излучения.

Защита от внешнего гамма-излучения осуществляется с помощью экранов, кабин, щитов и т.п., изготовленных из свинца, бетона или других материалов с большим содержанием тяжелых элементов.

Применение СИЗ для защиты от гамма-излучения нецелесообразно, поскольку при малом коэффициенте защиты (не более 2) они имеют массу более 30 кг, значительно затрудняют движение человека, что в итоге приводит к дополнительному облучению за счет увеличения времени, необходимого для проведения работ в зоне высоких уровней гамма-излучения.

Защита от внешнего бета-излучения может осуществляться с помощью СИЗ, изготовленных из материалов, состоящих из легких элементов (например, полимерных материалов) с массовой поверхностной плотностью 0,3-0,5 г/см3. Критическими органами являются хрусталик глаза и кожные покровы.

Внутреннее облучение обусловлено радионуклидами, попавшими в организм человека.

Наиболее опасными путями поступления радионуклидов в организм человека являются вдыхание радиоактивных газов и аэрозолей, загрязнение кожных покровов, употребление пищи и воды с содержанием радионуклидов свыше допустимых величин, попадание радиоактивных веществ в рот при курении.

Для предотвращения поступления радионуклидов в организм человека и снижения внешнего облучения при пребывании на загрязненной территории необходимо:

  1. постоянно применять соответствующие средства индивидуальной защиты;
  2. курить, принимать пищу, пить воду только в специально отведенных местах, предварительно вымыв руки, лицо и прополоскав рот;
  3. при выходе из зоны радиоактивного загрязнения пройти санитарную обработку, продезактивировав СИЗ самостоятельно или сдав их на дезактивацию в спецпрачечную.

Планируемое повышенное облучение персонала во время аварии выше установленных дозовых пределов может быть разрешено только тогда, когда нет возможности принять меры, исключающие их превышение, и может быть оправдано лишь спасением людей, предотвращением развития аварии и облучения большого числа людей.

Источник: https://studopedia.ru/view_factors.php?id=51

Ионизирующее излучение, последствия для здоровья и защитные меры

Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа).

Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения.

Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду.

Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов.

Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Люди каждый день подвергаются воздействию естественного и искусственного излучения.

Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе.

Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте.

В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения.

Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием).

Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население.

  Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).

Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. 

Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей. 

Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год. 

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей.

Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения.

Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв.

В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности.

Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует.

Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся “установления норм и стандартов, содействия в их соблюдении и соответствующего контроля” ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

Источник: https://www.who.int/ru/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures

Ионизирующее излучение: виды и действие на организм человека

Повреждающее действие ионизирующих излучений: Ионизирующее излучение может действовать на организм как из внеш­них

Человек подвергается воздействию ионизирующего излучения повсеместно. Для этого необязательно попадать в эпицентр ядерного взрыва, достаточно оказаться под палящим солнцем или провести рентгенологическое исследование легких.

Ионизирующее излучение – это поток лучевой энергии, образующийся при реакциях распада радиоактивных веществ. Изотопы, способные повысить радиационный фонд, находятся в земной коре, в воздухе, человеку радионуклиды могут попадать в организм через желудочно-кишечный тракт, дыхательную систему и кожные покровы.

Минимальные показатели радиационного фона не представляют угрозы для человека. По-другому дело обстоит, если ионизирующее излучение превышает допустимые нормы. Организм мгновенно не отреагирует на вредные лучи, но спустя годы появятся патологические изменения, которые могут привести к плачевным последствиям, вплоть до летального исхода.

Что такое ионизирующее излучение?

Освобождение вредного излучения получается после химического распада радиоактивных элементов. Самыми распространенными являются гамма- , бета- и альфа -лучи. Попадая в организм, излучение разрушительно воздействует на человека. Все биохимические процессы нарушаются, находясь под влиянием ионизации.

Виды излучения:

  1. Лучи типа альфа обладают повышенной ионизацией, но мизерной проникающей способностью. Альфа-излучение попадает на кожу человека, внедряясь на расстояние менее одного миллиметра. Представляет собой пучок из высвобожденных ядер гелия.
  2. В бета-лучах движутся электроны или позитроны, в воздушном потоке они способны преодолеть расстояние до нескольких метров. Если вблизи источника появится человек, бета-излучение проникнет глубже, чем альфа- , но ионизирующие способности у данного вида намного меньше.
  3. Одно из самых высокочастотных электромагнитных излучений является разновидность гамма- , которое обладает повышенной способностью проникновения, но очень маленьким ионизирующим действием.
  4. Рентгеновское излучение характеризуется короткими электромагнитными волнами, которые возникают при контакте бета-лучей с веществом.
  5. Нейтронное – высокопроникающие пучки лучей, состоящие из незаряженных частиц.

Откуда берется излучение?

Источниками ионизирующих излучений могут стать воздух, вода и продукты питания. Вредоносные лучи встречаются в природе или создаются искусственно для медицинских или промышленных целей. В окружающей среде всегда присутствует радиация:

  • исходит из космоса и составляет большую часть от общего процента излучения;
  • радиационные изотопы свободно находятся в привычных природных условиях, содержатся в горных породах;
  • радионуклиды попадают в организм с пищей или воздушным путем.

Искусственное излучение создано в условиях развивающейся науки, ученые смогли открыть уникальность рентгеновских лучей, с помощью которых возможна точная диагностика многих опасных патологий, в том числе и инфекционных заболеваний.

В промышленном масштабе используется ионизирующее излучение в диагностических целях. Люди, работающие на подобных предприятиях, несмотря на все меры безопасности, применяемые по санитарным требованиям, находятся во вредных и опасных условиях труда, неблагоприятно отражающихся на здоровье.

Что происходит с человеком при ионизирующем излучении?

Разрушающее влияние ионизирующего излучения на организм человека объясняется способностью радиоактивных ионов вступать в реакцию с составляющими клеток. Общеизвестно, что человек на восемьдесят процентов состоит из воды. При облучении вода разлагается и в клетках в результате химических реакций образуется перекись водорода и гидратный окисел.

В дальнейшем происходит окисление в органических соединениях организма, вследствие чего клетки начинают разрушаться. После патологического взаимодействия у человека нарушается обмен веществ на клеточном уровне. Последствия могут быть обратимыми, когда контакт с излучением был незначительным, и необратимыми при длительном облучении.

Влияние на организм может проявляться в форме лучевой болезни, когда поражены все органы, радиоактивные лучи могут вызывать генные мутации, которые передаются по наследству в виде уродств или тяжелых заболеваний. Нередки случаи перерождения здоровых клеток в раковые с последующим разрастанием злокачественных опухолей.

Последствия могут появиться не сразу после взаимодействия с ионизирующим излучением, а через десятки лет. Длительность бессимптомного течения напрямую зависит от степени и времени, в течение которого человек получал радиоактивное облучение.

Биологические изменения при действии лучей

Воздействие ионизирующего излучения влечет значительные изменения в организме в зависимости от обширности участка кожных покровов, подвергающегося внедрению лучевой энергии, времени, в течение которого излучение остается активным, а также состояния органов и систем.

Чтобы обозначить силу излучения за определенный период времени, единицей измерения принято считать Рад. В зависимости от величины пропущенных лучей у человека могут развиться следующие состояния:

  • до 25 рад – общее самочувствие не меняется, человек чувствует себя хорошо;
  • 26 – 49 рад – состояние в общем удовлетворительное, при такой дозировке кровь начинает изменять свой состав;
  • 50 – 99 рад – пострадавший начинает ощущать общее недомогание, усталость, плохое настроение, в крови появляются патологические изменения;
  • 100 – 199 рад – облученный находится в плохом состоянии, чаще всего человек не может трудиться из-за ухудшающегося здоровья;
  • 200 – 399 рад – большая доза излучения, которая развивает множественные осложнения, а иногда приводит к летальному исходу;
  • 400 – 499 рад – половина людей, попавших в зону с такими значениями радиации, умирают от резвившихся патологий;
  • облучение более 600 рад не дает шанса на благополучный исход, смертельная болезнь уносит жизни всех пострадавших;
  • единовременное получение дозы излучения, которая в тысячи раз больше допустимых цифр – погибают все непосредственно во время катастрофы.

Возраст человека играет большую роль: наиболее восприимчивы к негативному влиянию ионизирующей энергии дети и молодые люди, не достигшие двадцатипятилетнего возраста. Получение больших доз радиации во время беременности можно сопоставить с облучением в раннем детском возрасте.

Патологии головного мозга возникают только, начиная с середины первого триместра, с восьмой недели и до двадцать шестой включительно. Риск возникновения раковых образований у плода значительно возрастает при неблагоприятном радиационном фоне.

Чем грозит попадание под влияние ионизирующих лучей?

Единовременное или регулярное попадание радиации в организм имеет свойство к накоплению и последующим реакциям через некоторый период времени от нескольких месяцев до десятилетий:

  • невозможность зачать ребёнка, данное осложнение развивается как у женщин, так и у мужской половины, делая их стерильными;
  • развитие аутоиммунных заболеваний невыясненной этиологии, в частности рассеянного склероза;
  • лучевая катаракта, приводящая к потере зрения;
  • появление раковой опухоли – одно из наиболее частых патологий с видоизменением тканей;
  • заболевания иммунного характера, нарушающие привычную работу всех органов и систем;
  • человек, подвергающийся излучению, живет намного меньше;
  • развитие мутирующих генов, которые вызовут серьезные пороки в развитии, а также появление в ходе развития плода аномальных уродств.

Удаленные проявления могут развиться непосредственно у облученного индивидуума или передаться по наследству и возникать у последующих поколений. Непосредственно у больного места, через которое проходили лучи, возникают изменения, при которых ткани атрофируются и уплотняются с появлением узелков множественного характера.

Данный симптом может затронуть кожные покровы, легкие, кровеносные сосуды, почки, клетки печени, хрящевая и соединительная ткани. Группы клеток становятся неэластичными, грубеют и утрачивают способность выполнять свое предназначение в организме человека с лучевой болезнью.

Лучевая болезнь

Одно из самых грозных осложнений, разные этапы развития  которого способны привести к смерти пострадавшего. Заболевание может иметь острое течение при единовременном облучении или хронический процесс при постоянном нахождении в зоне радиации. Патология характеризуется стойким изменением всех органов и клеток и аккумуляцией патологической энергии в организме больного.

Проявляется недуг следующими симптомами:

  • общая интоксикация организма с рвотой, диареей и повышенной температурой тела;
  • со стороны сердечно-сосудистой системы отмечается развитие гипотонии;
  • человек быстро устает, возможно возникновение коллапсов;
  • при больших дозах воздействия кожа краснеет и покрывается синими пятнами в участках, которые испытывают недостаток в снабжении кислородом, тонус мышц снижается;
  • второй волной симптоматики является тотальное выпадение волос, ухудшение самочувствия, сознание остается замедленным, наблюдается общая нервозность, атония мышечной ткани, нарушения в головном мозге, способные вызвать помутнения сознания и отек мозга.

Как защититься от облучения?

Определение эффективной защиты от вредных лучей лежит в основе профилактики поражения человека во избежание появления негативных последствий. Чтобы спастись от облучения необходимо:

  1. Сократить время воздействия элементов распада изотопов: человек не должен находиться в опасной зоне длительный период. К примеру, если человек работает на вредном производстве, пребывание работника в месте потока энергии должно сократиться до минимума.
  2. Увеличить расстояние от источника, сделать это возможно при использовании множественных инструментов и средств автоматизации, позволяющих выполнять работу на значительном расстоянии от внешних источников с ионизирующей энергией.
  3. Уменьшить площадь, на которую попадут лучи, необходимо с помощью защитных средств: костюмов, респираторов.

Источник: https://otravleniya.info/izluchenie/ioniziruyushhee.html

1. Ионизирующее излучение. Общая характеристика

повреждающегодействия ионизирующего излучения.

Впроцессе своей жизни человек подвергаетсявоздействию ионизирующего излучения/ИИ/ как от естественных источников/космическое облучение, радионуклиды,находящиеся в земной коре, воде,атмосфере/,так и от искусственных/техногенных/. Естественная радиациясопровождает жизнь на земле постоянно,она не имеет ни цвета, ни запаха, нивкуса, её воздействие столь незначительно,что не может вызвать заметных нарушенийжизнедеятельности организма.

Человечество,как и весь живой мир в целом ранее неиспытывало воздействие высоких доз ИИ;в процессе эволюции не сформировалисьспецифические рецепторные структуры,человек не мог приспособиться кповреждающему эффекту ИИ, следовательно,не мог и обрести значимых индивидуальныхзащитных свойств.

Посвоей природе все ионизирующие излученияподразделяются на электромагнитные/рентгеновские излучения и -лучи,сопровождающие радиоактивный распад/и корпускулярные /заряжённые частицы:-частицы- ядра гелия, -лучи- электроны, протоны, -мезоны,а также нейтроны, не несущие электрическогозаряда/.

Повреждающеедействие различных видов ИИ зависит отплотности ионизации в тканях и ихпроникающей способности. Чем корочепуть прохождения /пробег/ частиц втканях, тем больше плотность ионизациии сильнее повреждающее действие.

Наибольшая ионизирующая способностьу -лучей,имеющих длину пробега в биотканяхнесколько десятков микрон, наименьшая- у -лучей.

Проникающая способность ИИ проявляетсяв том, что при тотальном облучении ниодин участок организма не остаётсяинтактным.

Похарактеру воздействия различают внешнееоблучение, когда источник находитсявне организма, контактное и внутреннее/инкорпорированное/, когда радиоактивныевещества попадают внутрь организма.

Облучениеможет быть однократным, фракционированным/дробным/ и длительным. При дробном идлительном облучении поражение организматяжелее, чем при однократном, т.к. вышесуммарные поглощённые дозы.

ДействиеИИ проявляется на всех уровняхбиологической организации на уровнемакромолекул, клеток, тканей, органов,целостного организма (табл. 1).

Оно чреватовозникновением местных изменений/лучевые ожоги, некрозы, катаракты/ иобщими явлениями /острая и хроническаялучевая болезнь/, а также отдалённымипоследствиями /злокачественныеновообразования, гемобластозы,наследственная патология, нарушениярепродуктивной функции, функцийнейро-эндокринной, иммунной и др. систем,снижение адаптационных возможностей,преждевременное старение, уменьшениесредней продолжительности жизни/.

Таблица 1

Радиационныеповреждения на всех уровнях

биологическойорганизации

Уровень биологической организации

Радиационные повреждения

Молекулярный

Повреждение ферментов, ДНК, РНК, нарушение обмена веществ

Субклеточный

Повреждение клеточных мембран, ядер, хромосом, митохондрий, лизосом

Клеточный

Остановка деления и гибель клеток; трансформация в злокачественные клетки

Тканевый, органный

Повреждение ЦНС, костного мозга, желудочно-кишечного тракта

Организменный

Сокращение продолжительности жизни или смерть

Популяционный

Изменение генетической характеристики в результате мутаций

Своеобразиеформирования и исхода патологическогопроцесса, многообразие непосредственныхи отдаленных последствий облученияопределяются:

  • действием ИИ на молекулярном уровне;

  • стойкостью местных патологических изменений при определенном уровне доз, наряду с выраженными общими компенсаторно-приспособительными реакциями за счет сохранившегося неповрежденного резерва;

  • наличием длительного скрытого периода;

  • большим разнообразием клинических проявлений и форм реакции в зависимости от характера и дозы излучения;

  • зависимостью частоты и выраженности непосредственно возникающих патологических изменений и исходов заболевания от дозы облучения.

Тяжестьпоражения, биологический и клиническийэффект, тип лучевых реакций, их значимостьдля организма, время проявления/непосредственно после облучения, вскорепосле него или в отдаленные сроки/определяются:

  • видом ИИ, его физическими характеристиками (в таблице 8 представлены основные физические величины, используемые в радиационной биологии и их единицы);

  • дозой облучения /доза-эффект/, мощностью дозы /мощность дозы-эффект/. Однако прямая зависимость от дозы существует только для больших и средних доз. Действие малых доз ИИ подчиняется особым закономерностям;

  • характером воздействия /внешнее или внутреннее, общее или местное, однократное или дробное/;

  • общей реактивностью организма;

  • радиочувствительностью тканей, органов и систем, существенных для выживания организма.

Радиочувствительность- способность живого объекта отвечатьопределенной реакцией на воздействиеИИ.

Она выражается в единицах поглощеннойэнергии, способной вызвать наблюдаемуюреакцию у определенного процентаисследуемой популяции биологическихобъектов.

Для определения сравнительнойрадиочувствительности используетсядоза радиации, вызывающая определенныйпроцент гибели /например, 50%/ взятойпопуляции.

Радиочувствительностьклетки, ткани, организма определяется:

  • объемом и структурной организацией генома;

  • активностью энергообеспечивающих систем;

  • уровнем метаболизма и активности ферментов репарации;

  • активностью защитных и сенсибилизирующих систем;

  • устойчивостью биологических мембран и их репарируемостью;

  • уровнем активности систем антиоксидантной защиты и эндогенных радиопротекторов (серотонин, меланин и др.);

  • наличием в клетке предшественников радиотоксинов;

  • гетерогенностью клеток и возможностью репопуляции.

Установлено,что радиочувствительность тканипропорциональна пролиферативнойактивности и обратно пропорциональнастепени дифференцированности составляющихеё клеток /правило Бергонье-Трибондо/.

Почувствительности к ИИ различают дватипа клеток и тканей: а) радиочувствительные/делящиеся клетки и малодифференцированныеткани/ – кроветворные клетки костногомозга, зародышевые клетки семенников,кишечный и кожный эпителий; б)радиорезистентные /неделящиеся клеткии дифференцированные ткани/ – мозг,мышцы, печень, почки, хрящи, связки.Исключение составляют лимфоциты, которыенесмотря на их дифференцированность инеспособность к делению, обладаютвысокой чувствительностью к ИИ. В тожевремя ткани радиорезистентные кнепосредственному действию ИИ оказываютсявесьма уязвимыми в отношении отдаленныхпоследствий.

Постепени чувствительности к ИИ (в убывающемпорядке) ткани располагаются в следующейочерёдности: лимфоидная ткань, кроветворнаяткань, эпителиальная ткань /гонады,ЖКТ/, покровный эпителий кожи, эндотелийсосудов, хрящ, кость, нервная ткань.Наиболее радиочувствительными клеткиоказываются во время митоза.

Жизненноважные органы или системы с высокойрадиочувствительностью, которые первымивыходят из строя в исследуемом диапазонедоз, что обуславливает гибель организмав определённые сроки после облучения,называются критическими.К ним относятся: красный костный мозг,гонады, хрусталик, эпителий слизистыхоболочек и кожи.

Выявленаобщая закономерность: чем сложнее живойорганизм, тем он более чувствителен кдействию радиации. По степени возрастаниячувствительности к ИИ живые организмырасполагаются в следующем порядке:вирусы амёба черви кролик крыса мышь обезьяна собака человек.

Втаблице 2 представлены данные разныхавторов о радиочувствительностиразличных объектов к дозам -излучения,вызывающим 50 %-ную сметность.

Таблица2

Биологический вид

Доза, Гр

Биологический вид

Доза, Гр

Овца

1,5-2,5

Птицы

8,0-20,0

Осел

2,0-3,8

Рыбы

8,0-20,0

Собака

2,5-3,0

Кролик

9,0-10,0

Человек

2,5-3,5

Хомяк

9,0-10,0

Обезьяны (разных видов)

2,5-6,0

Змеи

80,0-200,0

Мыши разных линий

6,0-15,0

Насекомые

10,0-100,0

Крысы разных линий

7,0-9,0

Растения

10,0-1500,0

Источник: https://studfile.net/preview/1472768/

Medic-studio
Добавить комментарий