Раневая баллистика и морфология огнестрельных переломов

Раневая баллистика и морфология огнестрельных переломов. Терминальная баллистика огнестрельных ранений конечностей

Раневая баллистика и морфология огнестрельных переломов

Введение

Лечение раненых и пострадавших с боевыми повреждениями конечностей является одной из главных проблем военно-полевой хирургии, актуальной как для военно-медицинской службы Вооруженных Сил, так и для отечественного здравоохранения.

Межнациональные вооруженные конфликты на территории России и в ближнем зарубежье, активизация криминальных структур и связанный с ней рост преступности, широкое хождение огнестрельного оружия и взрывных боеприпасов среди гражданского населения привели к появлению тысяч раненых в мирное время.

В этой связи большой научно-практический потенциал, накопленный российскими военными травматологами, может быть использован при лечении раненых как военными, так и гражданскими специалистами.

За время, прошедшее с окончания второй мировой войны, произошла значительная эволюция огнестрельного оружия и взрывных боеприпасов. Как следствие резко увеличились масштабы и тяжесть разрушения тканей, в несколько раз возросла частота множественных и сочетанных ранений.

Травматическая болезнь, развивающаяся в ответ на современную боевую травму, как правило, характеризуется затяжным и осложненным течением с высокими показателями летальности и тяжелой инвалидности.

Эти обстоятельства дают основания разрабатывать новые подходы к лечению раненых на этапах медицинской эвакуации.

Вместе с тем достижения фундаментальных медицинских дисциплин позволили на значительно более высоком научно-методическом уровне взглянуть на процессы, протекающие в клетках, тканях, органах и во всем человеческом организме после ранений современным оружием.

За последние десятилетия клиническая медицина обогатилась большим количеством совершенных и эффективных методов диагностики и лечения.

Применительно к разделу военной травматологии это разработка и внедрение в клиническую практику чрескостного и внутреннего остеосинтеза, сложных методик антологического обследования и ангиохирургических операций, новых методик восстановительного лечения и протезирования.

Боевые повреждения конечностей доминируют в структурах боевой патологии со времен первой мировой войны, составляя, по данным различных авторов, от 50 до 70%. По мнению многих авторитетных специалистов, раненые и пострадавшие с боевыми повреждениями конечностей представляют собой огромный потенциальный резерв противоборствующих армий.

В результате успешного лечения данной категории раненых боевые порядки действующей армии пополняются большим количеством наиболее опытных и обстрелянных бойцов, и, наоборот, неудачи медицинской реабилитации пораженных военнослужащих оборачиваются для воюющего государства тяжелым бременем содержания небоеспособных и нетрудоспособных инвалидов.

Авторами настоящего издания на протяжении длительного времени всесторонне изучается проблема лечения раненых и пострадавших с боевыми повреждениями конечностей.

На большом клинико-экспериментальном материале исследованы основные аспекты терминальной баллистики современных высокоскоростных ранящих снарядов, макро- и микроанатомии поврежденных сегментов конечностей, описаны закономерные процессы заживления огнестрельных костно-мышечных ран, а также изучен механо- и патогенез взрывных повреждений.

На базе фундаментальных научных исследований разработана современная рациональная система лечения раненых и пострадавших с боевыми повреждениями конечностей, которая апробирована в процессе медицинской реабилитации более чем 1500 воинов-интернационалистов.

Список сокращений

БВД — боеприпасы взрывного действия.

ВМедА — Военно-медицинская академия.

ВП — взрывные повреждения.

ВПП — временная пульсируемая полость.

МВР — минно-взрывное ранение.

МВТ — минно-взрывная травма.

МПП — медицинский пункт полка.

омедб —отдельный медицинский батальон.

ОЦК — объем циркулирующей крови.

ПХО — первичная хирургическая обработка.

СМНТК — синдром местных нарушений тканевого кровотока.

ЦВД — центральное венозное давление.

Раневая баллистика и морфология огнестрельных переломов. Терминальная баллистика огнестрельных ранений конечностей

В основе разрушающего действия любого огнестрельного снаряда, скорость полета (V) которого превышает 300 м/с, лежит образование временной пульсирующей полости (ВПП) с зонами избыточного давления по периферии.

Число и максимальная амплитуда кавитаций зависят от величины кинетической энергии и формы ранящего снаряда, а также от стабильности его полета.

Кинетическая энергия ранящего снаряда определяется прежде всего скоростью полета и в меньшей степени его массой.

В настоящее время в армиях всех развитых стран мира завершился переход от стрелкового оружия традиционного калибра 7,62 мм к оружию калибра 5,56 мм, в Вооруженных Силах РФ — к оружию калибра 5,45 мм. Масса малокалиберных пуль меньше массы снарядов калибра 7,62 мм (3,5 и 7,9 г соответственно) в 2 раза и более но начальная скорость полета приблизительно в 1,5 раза выше (700 и 1100 м/с).

Согласно предложениям, сформулированным на международных симпозиумах по раневой баллистике в Гетеборге (Швеция, 1975-1985 гг.), для определения и контроля повреждающего действия новых ранящих снарядов исследуют характер их движения и фрагментацию в блоках-имитаторах (желатин, мыло и др.), оценивают размеры ВПП, изучают огнестрельные переломы длинных костей конечностей.

Характеризуя раневую баллистику высокоскоростных малокалиберных пуль на основании данных импульсной рентгенографии и скоростной киносъемки, следует подчеркнуть, что, в отличие от пуль калибра 7,62 мм, обладающих высокой устойчивостью при прохождении биологических объектов, современные ранящие снаряды постепенно разворачиваются в тканях (феномен «рыскания»). В связи с этим даже при поражении мягкотканных образований максимальная амплитуда кавитаций ВПП, вызванных пулей 5,56 мм, почти в 2 раза превышает аналогичный показатель при ранениях пулей 7,62 мм. В результате большей отдачи кинетической ранения малока-либерными пулями сопровождаются гостом кавитаций ВПП.

Большое многообразие форм, а также значительные колебания массы и скорости полета свойственны ее кол очным элементам.

Раневой канал имеет неправильный ломаный ход из-за первичной и вторичной девиации тканей и заполнен тканевым детритом, инородными телами, сгустками крови, свободными и связанными с надкостницей и мышцами костными фрагментами.

В зависимости от вида и баллистических параметров ранящего снаряда, характера повреждаемых тканей раневой канал может иметь сигарообразную, коническую, колбообразную форму.

Для огнестрельных переломов, нанесенных высокоскоростными малокалиберными пулями, характерна коническая форма раневого канала с расширением к выходному отверстию.

Стенки раневого канала, представленные некротизированными мышцами, формируют зону первичного травматического некроза. Границы данной зоны сильно размыты и визуально определяются с большим трудом.

Признаки нежизнеспособности мышечной ткани состоят в изменении обычной окраски волокон, отсутствии кровотечения и сократимости, а также в снижении эластичности ткани, выявляемом во время хирургической обработки.

Зона молекулярного сотрясения отражает специфику огнестрельных ранений. Она формируется под воздействием ВПП или «бокового удара». В зависимости от баллистических параметров ранящего снаряда эта зона простирается на несколько десятков сантиметров от стенок раневого канала.

Ткани, находящиеся в этой зоне, страдают от воздействия циклических пластических деформаций, порожденных ВПП, а также от вторичных нарушений микроциркуляции и нервной трофики. Если патологические изменения в клетках и тканях зоны молекулярного сотрясения становятся необратимыми, то формируются фокусы вторичного травматического или позднего некроза.

Эти очаги расположены мозаично, что объясняется неоднородностью тканей поврежденных сегментов конечностей.

Боевые повреждения конечностей

Как правило, в 1-е сутки после ранения в пределах зоны молекулярного сотрясения обнаруживаются лишь дистрофические изменения клеток и тканей, визуально не заметные.

Не определяются невооруженным глазом и функциональные и морфологические нарушения в системе микроциркуляции (спазм сосудов, стаз, сладж клеток крови и др.) и нервной трофики. Для определения состояния тканей в зоне молекулярного сотрясения предложены сложные инструментальные и лабораторные методы.

Однако невооруженным глазом заметны межмышечные гематомы при огнестрельных переломах костей, распространяющиеся на 10-30 см от места разрушения кости (рис. 1.4).

В зависимости от тенденции развития раневого процесса и проводимой целенаправленной терапии на 2-3-и сутки после ранения в результате гипоксии тканей и нарушений тканевого метаболизма формируются крупнофокусные (заметные на глаз) или мелкофокусные (не заметные на глаз) очаги вторичного травматического некроза. Выраженность поздних некрозов во многом определяет тактику военно-полевого хирурга по отношению к огнестрельной костно-мышечной ране.

При огнестрельных ранениях конечностей могут повреждаться крупные сосуды и нервы. Помимо их непосредственного повреждения ранящим снарядом (краевое повреждение, разрыв сосуда или нерва, первичный огнестрельный дефект сосуда или нерва), наблюдаются и диктантные травмы.

Морфологическим субстратом ушиба сосуда становятся внутрисосудистый тромбоз и паравазальные гематомы. Как правило, обнаруживаются и ишемические нарушения тканей в бассейне поврежденного сосуда.

Для ушиба нервного ствола характерны внутриствольные и параневральные кровоизлияния и гематомы.

При поражении костей скелета современными высокоскоростными ранящими снарядами диафиз разрушается на протяжении 5-7 см.

При повреждении кортикальной зоны трубчатых костей возникают крупнооскольчатые, мелкооскольчатые или раздробленные переломы, в том числе с образованием первичных дефектов костной ткани.

Часто наблюдается раскалывание кости с образованием продольных трещин, при этом линии переломов могут достигать смежных суставов. Почти во всех наблюдениях

Раневая баллистика и морфология огнестрельных переломов происходит отслойка надкостницы на 5-5,5 см от концов отломков.

В большинстве случаев значительного смещения отломков при огнестрельных переломах не происходит из-за временного посттравматического паралича мышц сегмента.

Ранения губчатых костей, а также метаэпифизарных зон трубчатых костей, как правило, представлены дырчатыми или крупнооскольчатыми переломами (рис. 1.5-1.8).

Морфологически при огнестрельных переломах выделяют несколько зон повреждения костной ткани, которые определяют, в частности, по состоянию костного мозга по мере удаления от раневого канала. Различают: зону сплошной геморрагической инфильтрации костного мозга; зону сливных кровоизлияний; зону точечных кровоизлияний.

Ангиографические исследования позволили установить аваскулярные зоны на торцах костных отломков и в костных осколках (рис. 1.9, 1.10). Восстановление микроциркуляции в этих образованиях происходит очень медленно и занимает в среднем от 2 нед до 1,5-2 мес.

Изучение состояния лимфатической системы после огнестрельных переломов выявило длительную декомпенсацию ее дренажной функции. Степень нарушения лимфооттока зависит от сопутствующих ранений крупных сосудов и нервов.

При неосложненном течении раневого процесса лимфообращение обычно восстанавливается в течение 45-50 сут путем развития коллатералей в подкожной клетчатке.

В случаях первичных повреждений крупных лимфатических коллекторов, как правило, развивается плотный отек мягких тканей дистальнее костно-мышечной раны.

Источник: https://studopedia.net/14_7745_ranevaya-ballistika-i-morfologiya-ognestrelnih-perelomov-terminalnaya-ballistika-ognestrelnih-raneniy-konechnostey.html

Аневая баллистика и морфология огнестрельных переломов

Раневая баллистика и морфология огнестрельных переломов

⇐ Предыдущая3456789101112Следующая ⇒

Раневая баллистика. Разрушающее действие любого огнестрельного снаряда зависит от его кинетической энергии, которая определяется скоростью полета и в меньшей степени его массой.

По данным импульсной рентгенографии и скоростной киносъемки при прохождении пули или осколка через биологическую ткань идет образование временной пульсирующей полости (ВПП) с зонами избыточного давления по периферии. Размеры временной пульсирующей полости превышают калибр снаряда более чем в 15 раз.

Число и максимальная амплитуда кавитаций зависят от величины кинетической энергии и формы ранящего снаряда, а также от стабильности его полета. Наблюдаемые перепады давления в момент пульсации полости приводят к внедрению в ткани объектов внешней среды и микробному загрязнению раны.

Тяжесть ранений определяется также и баллистическими свойствами снарядов. Конструктивные особенности современных пуль предусматривают смещение центра тяжести, что приводит к своеобразному феномену кувыркания и фрагментации снаряда.

Разворот пули в тканях сопровождается дополнительной передачей энергии окружающим тканям и формированию обширной звездчатой формы раны выходного отверстия.

Масштабы повреждения тканей зависят также от их физических свойств: при прохождении ранящего снаряда через однородные ткани (например, мышцы) происходит равномерная отдача кинетической энергии. При встрече ранящего снаряда с более плотными преградами (например, костью) происходит максимальная передача кинетической энергии тканям по типу взрыва. В результате этого образуются множественные вторичные ранящие снаряды, которые усугубляют тяжесть ранения и образуют дополнительные раневые каналы.

В результате огнестрельного ранения образуются:

1. Раневой канал.

2. Зона травматического или первичного некроза – это стенка раневого канала с непосредственно примыкающими некротизированными мышцами, формирующим зону первичного травматического некроза.

Границы данной зоны сильно размыты и визуально определяются с большим трудом.

Признаки нежизнеспособности мышечной ткани определяются изменением обычной окраски волокон, отсутствием кровотечения и сократимости, а также снижением эластичности ткани, выявляемом во время хирургической обработки

3. Зона вторичного некроза или зона молекулярного сотрясения отражает специфику огнестрельных ранений. Она формируется под воздействием ВПП или «бокового удара». В зависимости от баллистических параметров ранящего снаряда эта зона простирается на несколько десятков сантиметров от стенок раневого канала.

Ткани, находящиеся в этой зоне, страдают от воздействия циклических пластических деформаций, порожденных ВПП, а также от вторичных нарушений микроциркуляции и нервной трофики. Зона молекулярного сотрясения, а это анатомический участок с динамическим процессом длящимся несколько суток.

В 1-е сутки после ранения в пределах зоны молекулярного сотрясения обнаруживаются межмышечные гематомы, распространяющиеся на 10-30 см от зоны разрушения кости.

Спустя 2-3 суток после ранения в результате гипоксии тканей и нарушения метаболических процессов вокруг раневого канала формируется зона вторичного некроза.

Размеры ее зависят от величины переданной кинетической энергии снаряда, но, главным образом, от степени нарушения микроциркуляции крови в паравульнарных тканях, обусловленного как первичной реакцией сосудов, так и выраженностью посттравматического отека. Под влиянием целенаправленной терапии зона вторичного некроза может быть значительно уменьшена.

Патофизиологические механизмы раневого процесса протекают в 4 фазы:

I Первая фаза. Сосудистые нарушения как реакция на ранение. В ответ на огнестрельное ранение, сопровождающееся значительным разрушением тканей конечности (кожи, мышц, костей без повреждения крупных сосудов), наряду с общими системными изменениями возникает характерная местная реакция всей регионарной сосудистой сети.

Она вызывает спазм артерий и артериол в ответ на болевую (ноцицептивную) импульсацию; включает сосудистые шунты для сброса крови в обход зоны спазма, гипоксический парез (стойкое расширение) капилляров и венул, замедление и стаз крови в капиллярах, сопровождающиеся ограничением доставки кислорода вплоть до аноксии.

В последующем, по мере включения компенсаторных механизмов, происходит постепенное устранение всех сосудистых изменений и восстановление кровотока.

II Вторая фаза. Очищения раны. Именно гипоксия тканей (особенно мышечной), возникающая на почве микроциркуляторных расстройств в зоне огнестрельного ранения определяет динамику раневого процесса.

В частности, гипоксия тканей сопровождается выходом свободной жидкости в интерстициальное пространство. При этом увеличивается объем мышц и повышается гидростатическое давление в костно-фасциальных и фасциальных футлярах.

Дальнейшее снижение перфузии тканей углубляет их гипоксию, приводя к возникновению ишемических некрозов.

При отсутствии лечения в загрязненных микроорганизмами ранах параллельно происходит селекция патогенной микрофлоры и ее накопление до критического уровня (106 микробных тел на 1 г ткани).

Микробные токсины, воздействуя на страдающие от гипоксии клетки, вызывают их цитолиз и высвобождение большого количества биологически активных веществ, которые усугубляют нарушение местного кровотока и гипоксию тканей.

Ферментативная активность за счет эндогенных факторов (ферменты клеток) и экзогенных факторов (ферменты микробов) во времени усиливается и происходит лизис нежизнеспособных тканей.

За счет лейкоцитов, моноцитов, лимфоцитов формируется демаркационный вал, отделяющий жизнеспособные ткани от мертвых. И путем гноеоттока происходит вторичное очищение раны. Давыдовский И.В.

говорил: «Нагноение раны при ее хорошем дренировании является клиническим проявлением вторичного очищения, а не осложнением»

III Третья фаза. Регенерация. Происходит появление грануляционной ткани, первично островковая, затем заполняющая весь дефект.

IV Четверная фаза. Рубцевание и регенерация. Происходит рубцевание или эпителизация.

⇐ Предыдущая3456789101112Следующая ⇒

Дата добавления: 2014-11-12; просмотров: 430. Нарушение авторских прав

Рекомендуемые страницы:

Источник: https://studopedia.info/1-82237.html

Раневая баллистика и морфофункциональные изменения в тканях при огнестрельных ранениях

Раневая баллистика и морфология огнестрельных переломов

Раневая баллистика– область науки, занимающаяся определением поражающей эффективности огнестрельных ранящих снарядов на основе изучения их движения в биологических тканях и веществе мишеней-имитаторов. Термин «раневая баллистика» принадлежит Каллендеру и Френчу (1935). И.П.

Давыдовский понимает под ним физическое явление, возникающее в тканях в момент прохождения через них ранящего снаряда. В «Наставлении НАТО по неотложной военной хирургии» (1975) раневая баллистика определяется как изучение движения внутри тела ранящих снарядов и их повреждающей способности.

Цель изучения раневой баллистики – разработка единой методологии определения поражающих свойств современного огнестрельного оружия, защитных свойств индивидуальной бронезащиты и механизмов формирования огнестрельных ранений, а также создание унифицированного лечебно-диагностического алгоритма боевой огнестрельной травмы.

Для объяснения тяжелого течения огнестрельных ран создавались различные теории.

Теория отравления ран порохом. Предполагали, что при огнестрельных ранениях вместе с ранящим снарядом в рану заносятся частицы пороха, которые «отравляют» ткани в зоне раневого канала. Учение об огнестрельной ране, изложенное в книге И.

Брауншвейга (1497), пронизано убеждением о том, что все огнестрельные раны «отравлены» порохом, и в соответствии с этим автор рекомендовал своеобразные способы лечения: «Если кто ранен из ружья, и порохом рана отравлена, то возьми веревку волосяную и протолкни ее через простреленное отверстие, и протягивай ее туда и обратно на все лады, и тогда ты добьешься выхода пороха из раны; тогда рана не будет гноиться». Страх перед загрязнением ран порохом заставлял хирургов бороться с этим загрязнением, для чего выжигали раны каленым железом или заливали их кипящим маслом.

Ошибочность этой теории была доказана французским хирургом А. Паре в XVI столетии, который сформулировал требование о том, «чтобы хирург незамедлительно расширил рану, если только область ее распространения это позволяет». Он доказал, что особенности огнестрельного ранения зависят не от отравления порохом, а от размозжения тканей.

Теория ожога, объясняющая особенности течения огнестрельной раны тем, что пуля при прохождении через ткани в результате превращения механической энергии в тепловую нагревается и вызывает ожог тканей. В последующем многие авторы в эксперименте доказали, что температура пули при прохождении через ткани повышается крайне незначительно и не может вызвать ожога тканей, окружающих раневой канал.

Теория гидравлического действия. Родоначальником ее был Буш, но в законченном виде она сформулирована Кохером, Регером и Брунсом.

Согласно этой теории при проникновении ранящего снаряда в ткани в них возникают условия как в гидравлическом прессе, где движущийся поршень создает в жидкости давление, и это давление передается стенкам цилиндра по закону Паскаля во все стороны с одинаковой силой.

Гидравлическим эффектом сторонники этой теории объясняли чрезвычайно обширные разрушения внутренних органов при полостных ранениях. На убедительных опытах Е.В. Павлов, В.А.

Тиле показали несостоятельность этой теории и доказали, что разрушение тканей по мере продвижения ранящего снаряда становится все более обширным, в то время как по законам гидравлической теории оно должно распространяться равномерно.

В настоящее время общепризнана теория прямого и бокового удара, основанная на сформулированных в конце XIX века теории ударного действия Тиле и гидродинамической теории Шьернинга и Колера механизма образования огнестрельной раны.

Действие прямого удара осуществляется на ткани на том участке, где ранящий снаряд непосредственно с ними соприкасается. Сила бокового удара действует на ткани за пределами раневого канала. Используя современную регистрационную аппаратуру (импульсную фотографию, высокоскоростную киносъемку, тензометрию и др.

), удалось расшифровать механизм прямого и бокового удара. Было установлено, что вокруг пули формируется поток воздуха в виде клина. Направление движения этого потока параллельно и радиально траектории полета пули. Сжатый воздух, идущий впереди пули, – головная ударная волна – один из факторов, повреждающих ткани.

За ним следует сама пуля, которая преимущественно оказывает механическое действие и в зависимости от энергии, которой она обладает, вызывает различные повреждения. Пуля, обладающая большой кинетической энергией, при поражении кожи оказывает пробивное действие, т.е. образует отверстие, лишенное кожи.

Впервые на наличие в огнестрельной ране такого дефекта кожи обратил внимание Н.И. Пирогов в своей книге «О путешествии по Кавказу», вышедшей в свет в 1849 г.

При поражении пулей с неустойчивой траекторией полета происходит ее кувыркание в тканях. Это порождает две основные особенности.

Во-первых, движение пули не бывает прямолинейным, во-вторых, происходит более массивное повреждение тканей. Прямое действие снаряда вызывает разрывы, расщепление, размозжение тканей.

Степень разрушения тканей зависит от их строения, а также скорости, калибра и формы снаряда.

Поток воздуха, идущий радиально траектории полета пули, формирует временную пульсирующую полость, которая может превышать диаметр ранящего снаряда в 30-50 раз. Достигнув максимальных размеров, она начинает спадаться, происходит ее «схлопывание».

Время существования временной пульсирующей полости значительно превышает время прохождения пули в тканях. Перепады положительного и отрицательного давления в ней достигают 50 атм.

Это способствует обширному повреждению тканей, попаданию микробов и инородных тел на значительное расстояние от раневого канала.

При высокой скорости полета снарядов могут возникать сильные ударные волны. Эти волны не вызывают тяжелых механических повреждений, а влияют на внутриклеточные процессы, приводящие к разрушению клеточных структур. Под воздействием ударных волн происходят изменение свертываемости крови, коагуляция белка.

Пуля, обладающая большой кинетической энергией, попав в полый орган с жидким содержимым или кровенаполненный паренхиматозный орган, вызовет гидродинамическое действие, а поразив кость, разрушит ее, проявляя дробящее действие.

Пуля, имеющая к моменту контакта с телом малую энергию, сможет оказать лишь клиновидное действие, которое проявится раздвиганием тканей или их ушибом, последствиями которого могут быть ограниченные кровоизлияния, гематомы или поверхностные ушибленные раны.

Осколки разорвавшегося огнестрельного снаряда также оказывают преимущественно механическое воздействие, последствия которого будут прямо связаны с их кинетической энергией.

Свойствами пули, влияющими на характер ранения, являются ее масса, калибр, форма, конструктивные особенности. Эти характеристики пули взаимосвязаны. Поэтому и принято рассматривать поражающие свойства пули применительно к ее отдельным конструктивным типам.

Наибольшей устойчивостью в полете и при поражении биологической цели обладают пули с большей массой, длиной и калибром. Тупоконечные пули быстро передают энергию поражаемым тканям и приводят к так называемому останавливающему эффекту.

Остроконечные удлиненные оболочечные пули нередко отдают поражаемым тканям лишь 1/10 своей кинетической энергии. Наиболее существенные повреждения возникают при формировании сверхзвукового потока в тканях при передаче энергии.

Остроконечные пули образуют такой поток при скорости взаимодействия с мишенью около 1300 м/с, пули с закругленной головной частью – при 800 м/с.

Мягкие безоболочечные пули обладают высокой пластичностью и при контакте с мягкими биологическими тканями тратят часть энергии на собственную деформацию, тем самым увеличивают время воздействия и мощность удара. Это обстоятельство послужило одной из причин того, что Гаагская декларация (1899) запретила использование для поражения человека пуль, сплющивающихся в теле.

Смещение центра тяжести пули к ее хвостовой части значительно снижает устойчивость ее движения в воздушной среде и по ходу раневого канала.

В сходных условиях контакт остроконечной пули с поверхностью повреждаемой части тела приводит к возникновению сверхзвукового ударного потока в тканях при угле встречи 90° на скорости 130 м/с, а при угле 45° – 600 м/с. При этом нередки разрушения пули и ее внутренние рикошеты.

Следует заметить, что пули среднего калибра теряют стабильность только на расстоянии 1800-2000 м, в то время как малокалиберные пули неустойчивы уже на начальных участках траектории.

Высокоскоростные пули в имитаторах биологических тканей существенно теряют устойчивость, разворачиваясь продольной осью на 90° и более по отношению к направлению баллистической траектории. При этом возникают временные полости, размеры которых в десятки раз превышают калибр ранящего снаряда. Энергия малокалиберных и высокоскоростных пуль, как правило, ниже энергии пуль калибра 7,62 мм на всех дистанциях выстрела, однако объем переданной ими энергии выше.

Малокалиберная пуля обладает большим поражающим действием, так как способна отдавать поражаемому объекту большую долю кинетической энергии по сравнению c пулей среднего калибра.

Данный тип пуль позволяет говорить о новой, качественно отличающейся совокупности конструктивных и баллистических свойств, обеспечивающих интегрирующее поражающее действие: высокая начальная скорость, малая устойчивость в полете и в тканях, малая масса, смещенный к хвостовой части центр тяжести, мягкий сердечник.

Советская пуля к боеприпасу 5,45×39мм. Пуля применяется в боеприпасе к автомату АК-74, который принадлежит к новому поколению оружия уменьшенного калибра. Она имеет сплошную металлическую оболочку из стали с медным покрытием. Внутри расположен большой стальной сердечник.

Характерной особенностью является свободное пространство длиной около 5 мм в головной части. Его назначение – в смещении центра тяжести в сторону донной части, что заставляет пулю менять положение в начальной стадии пути в тканях человека.

Кроме того, в момент удара имеющийся внутри пули свинец перемещается вперед в свободное пространство. Перемещение свинца происходит не симметрично, и это служит одной из причин резкого изменения траектории пули при прохождении через ткани. Однако такое поведение пули не слишком увеличивает ее поражающее действие.

Хотя пуля изменяет положение уже через 7 см после проникновения в тело, значительный разрыв возникает лишь на конечном участке (рис. 16).

Головная часть пули составляет около 60% ее первоначального веса. Тыльная часть распадается на множество осколков, которые разлетаются в стороны и проникают в ткани на глубину до 7 см. При попадании в мягкие ткани возникает такой же эффект временной полости, как и при поражении пулей югославского производства для АК-47.

Рис. 16.Поражающее действие пули АК-74 (Мураховский В.И., Федосеев С.Л., 1992)

Кроме этого, наблюдается значительный разрыв тканей. Это объясняется тем, что сначала они пробиваются осколками, а затем подвергаются воздействию временной полости. Поэтому диаметр отверстия в полых органах, например в кишке, может достигать 7 см.

Американская пуля к боеприпасу 5,56×45 мм М193 (рис. 17). Эта пуля со сплошной металлической оболочкой проходит в тканях расстояние около 12 см головной частью вперед. Затем она разворачивается на 90°, сплющивается и разламывается в районе кольцевой канавки, предназначенной для соединения пули с гильзой.

Пули НАТО к боеприпасам 5,56×45 мм М855 и SS109. Американская пуля М855 имеет несколько большие вес и длину, чем пуля М193. В Европе известен такой же боеприпас SS109.

Хотя пули не являются идентичными, их поведение в тканях практически не отличается. Фирма БМ, разработчик боеприпаса SS109, утверждает, что высокая скорость вращения снижает тяжесть ранения пулей. Однако это не соответствует действительности.

Практика показывает, что характер ранений по существу такой же, как и от пули М193 (рис. 18).

Рис. 17.Поражающее действие американского боеприпаса М193 (Мураховский В.И., Федосеев С.Л., 1992)

Рис. 18.Поражающее действие боеприпаса М855 (SS109) (Мураховский В.И., Федосеев С.Л., 1992)

Ведущим моментом, определяющим ранящую способность снаряда, является количество переданной телу энергии. Она зависит от массы снаряда и его скорости и, согласно закону Ньютона, выражается формулой:

где Ek – кинетическая энергия снаряда, передаваемая телу; m – масса снаряда; Uj- скорость снаряда в момент попадания в тело; υ2– скорость снаряда в момент выхода из тела; g – гравитационное ускорение.

Таким образом, в механизме огнестрельного ранения играют ведущую роль следующие элементы.

• Головная ударная волна (баллистическая), волна сильно уплотненного воздуха, формирующаяся впереди пули.

• Сам ранящий снаряд.

• Временная пульсирующая полость (энергия бокового удара).

• Вторичные ранящие снаряды (костные отломки, летящие со скоростью до 70 м/с).

• Воздействие вихревого следа.

Сила прямого удара определяется характеристиками ранящего снаряда и вторичных снарядов: скоростью, массой, величиной, площадью ударного соприкосновения, устойчивостью в полете. Сила бокового удара зависит от воздействия головной ударной волны и временной пульсирующей полости.

Взаимодействие огнестрельного снаряда с поражаемой частью тела рождает качественно новые динамические характеристики: поглощенную энергию, ударные волны, время контакта, форму и протяженность раневой траектории, временную пульсирующую полость, устойчивость или неустойчивость движения снаряда, образование вторичных снарядов биологической природы, положение снаряда в момент удара, мощность ударного воздействия и др.

Для определения связи между вышеперечисленными динамическими характеристиками в научно-исследовательской лаборатории боевой патологии Государственного института усовершенствования врачей МО РФ была разработана физико-математическая модель механизма формирования огнестрельного ранения, основанная на фундаментальных положениях механики (рис. 19).

Рис. 19.Физико-математическая модель формирования огнестрельного ранения

Рассчитанное в процессе физико-математического моделирования основное уравнение раневой баллистики доказало, что возникающие в момент соприкосновения ранящего снаряда с тканями ударные волны представляют собой вынужденные затухающие механические колебания:

где b – коэффициент затухания волн упругой деформации; Ao – начальная амплитуда волн упругой деформации, м; ω – частота волн упругой деформации, Гц; υ – скорость распространения волн упругой деформации, м/с; t – время существования волн упругой деформации, с.

Волны упругой деформации (ВУД), регистрируемые при баллистических исследованиях, являются по своей природе аудиоколебаниями, собственная частота и скорость распространения которых в мишени-имитаторе определяются свойствами распространения звука в веществе (или композиции), из которого сделана мишень, а характер распространения зависит от выраженности торможения ранящего снаряда в веществе. ВУД нельзя путать с волнами упругого напряжения (или сжатия), которые напрямую связаны с давлением, возникающим во временной пульсирующей полости. Тем не менее по величине и динамике изменения ВУД расчетным путем можно судить о количестве кинетической энергии, переданной на единицу площади раневого канала. Поэтому в описании механизма повреждающего действия ранящего снаряда используются абсолютные величины и физические характеристики ВУД, регистрируемые баллистическими установками. Их амплитуда уменьшается с течением времени тем быстрее, чем больше коэффициент затухания среды, в которой они распространяются.

Для описания поражающего действия огнестрельного ранящего снаряда в настоящее время используется понятие «сфера поражения» (рис. 20).

Рис. 20.Структура сферы поражения, создаваемая огнестрельным снарядом в объекте. R1 – радиус сферы поражения; R2 – радиус временной пульсирующей полости; R3 – радиус зоны первичного некроза; R4 – радиус зоны молекулярного сотрясения

Сфера поражения – это временное патологическое образование, создаваемое высокоскоростным огнестрельным ранящим снарядом в объекте, включающее в себя временную пульсирующую полость, зону первичного некроза и зону молекулярного сотрясения. Наружная граница сферы поражения – это воображаемая линия, отделяющая здоровые ткани от тканей, поврежденных огнестрельным ранящим снарядом.

В биологических тканях в момент выстрела объем временной пульсирующей полости (R2) равен 2/3 объема сферы поражения (R1), причем после выстрела величина радиуса зоны первичного некроза (R3) приблизительно будет равна величине радиуса зоны молекулярного сотрясения (R4), а в сумме они дадут радиус сферы поражения (R1).

Размеры зоны первичного некроза определяются характером торможения ранящего снаряда в тканях, зависящим от момента инерции, что приводит к изменению величины и характера его прецессионно-нутационных колебаний, которое проявляется в резком изменении траектории движения снаряда.

Размер сферы поражения зависит от размеров временной пульсирующей полости. В пластичном веществе мишени-имитатора (баллистический пластилин, петролатум) после выстрела размеры остаточной полости будут соответствовать размерам внутренней пульсирующей полосы.

Поэтому для комплексной оценки тяжести механического повреждения, вызванного ранящим снарядом или пулей, важно знать объем сферы поражения или объем временной пульсирующей полости, которые не только определяют состояние пострадавшего в данный момент времени, но и позволяют прогнозировать течение и исход повреждения.

Кинетическая энергия снаряда, затрачиваемая на повреждение тканей, определяется уравнением:

где М – вес снаряда, кгхм/с2; υι – скорость снаряда в момент контакта с объектом, м/с; υ2 – скорость за пределами объекта, м/с; g – ускорение силы тяжести, м/с2.

Объем сферы поражения (временная пульсирующая полость + зона молекулярного сотрясения + зона первичного некроза) рассчитывается по уравнению:

В табл. 2 приведены критические величины радиуса и объема сферы поражения (V).

Таблица 2.Критические величины радиуса и объема сферы поражения

Радиус сферы поражения, см V 8 >0,0022 Крайне тяжелая

Можно заключить, что повреждающее действие огнестрельного оружия определяется следующими факторами:

• непосредственным повреждающим действием ранящего снаряда (пули);

• повреждающим действием комбинации ВУД, возникающей при торможении ранящего снаряда в тканях.

При этом выделяют три этапа формирования огнестрельного ранения, которые соответствуют фазам движения ранящего снаряда (пули) в тканях (табл. 3).

Таблица 3.Этапы формирования огнестрельного ранения

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/14_59954_ranevaya-ballistika-i-morfofunktsionalnie-izmeneniya-v-tkanyah-pri-ognestrelnih-raneniyah.html

Боевые повреждения конечностей (стр. 2 из 11)

Раневая баллистика и морфология огнестрельных переломов

Раневая баллистика и морфология огнестрельных переломов происходит отслойка надкостницы на 5-5,5 см от концов отломков.

В большинстве случаев значительного смещения отломков при огнестрельных переломах не происходит из-за временного посттравматического паралича мышц сегмента.

Ранения губчатых костей, а также метаэпифизарных зон трубчатых костей, как правило, представлены дырчатыми или крупнооскольчатыми переломами (рис. 1.5-1.8).

Морфологически при огнестрельных переломах выделяют несколько зон повреждения костной ткани, которые определяют, в частности, по состоянию костного мозга по мере удаления от раневого канала. Различают: зону сплошной геморрагической инфильтрации костного мозга; зону сливных кровоизлияний; зону точечных кровоизлияний.

Ангиографические исследования позволили установить аваскулярные зоны на торцах костных отломков и в костных осколках (рис. 1.9, 1.10). Восстановление микроциркуляции в этих образованиях происходит очень медленно и занимает в среднем от 2 нед до 1,5-2 мес.

Изучение состояния лимфатической системы после огнестрельных переломов выявило длительную декомпенсацию ее дренажной функции. Степень нарушения лимфооттока зависит от сопутствующих ранений крупных сосудов и нервов.

При неосложненном течении раневого процесса лимфообращение обычно восстанавливается в течение 45-50 сут путем развития коллатералей в подкожной клетчатке.

В случаях первичных повреждений крупных лимфатических коллекторов, как правило, развивается плотный отек мягких тканей дистальнее костно-мышечной раны.

Морфология репаративного остеогенеза при заживлении огнестрельных переломов

Данные морфологических исследований в зонах огнестрельных переломов диафизов трубчатых костей позволили установить, что в первые 10-15 сут в межотломковом пространстве доминируют дегенеративные и воспалительные процессы (клеточная деструкция, некроз, дистрофия, выпадение фибрина, лейкоцитарная инфильтрация и др.) (рис. 1.13). Следует особо подчеркнуть, что

Раневая баллистика и морфология огнестрельных переломов некрозу, деструкции и лизису в большинстве случаев подвергаются лишь самые мелкие, микроскопические костные осколки.

Значительная часть более крупных, заметных невооруженным глазом осколков сохраняла жизнеспособность в течение всего периода заживления перелома, и часто эти осколки становились источниками репарации костной ткани (рис. 1.14, 1.15).

Первые признаки регенерации раньше всего (10-15-е сутки) наблюдаются в надкостнице в виде пролиферации остеобластов и образования тонких петель грубоволокнистой костной ткани (рис. 1.16). Несколько позже (15-21-е сутки) отмечается аналогичная реакция эндоста и концов отломков (см. рис. 1.18).

К 21-30-м суткам прогрессирование процессов образования грубоволокнистой костной ткани, как правило, приводит к припаиванию к концам отломков и надкостнице расположенных в непосредственной близости от них осколков, сохранивших жизнеспособность.

Межотломковое пространство в эти сроки заполняется волокнистой соединительной тканью, в которую, как мозаика, вкраплены костные осколки. От некоторых из них, как протуберанцы, начинают отходить петли грубоволокнистой костной ткани (рис. 1.17-1.19).

Единичные костные осколки, окруженные остеокластами, гибнут, постепенно теряя структуру. Вокруг гибнущих осколков иногда можно увидеть лейко-цитарные инфильтраты, что косвенно свидетельствует об их инфицированности.

На некоторых препаратах в эти сроки в глубине межотломковой соединительной ткани можно увидеть очаги новообразования грубоволокнистой костной ткани, как правило, вблизи сосудов. К окончанию 1-го месяца после перелома в центре соединительнотканной мозоли возникают и очаги хондрогенеза.

На 30-45-е сутки после огнестрельного перелома характер про¬цессов в надкостнице, у концов отломков и в костно-мозговом канале не меняется, но петли грубоволокнистой костной ткани выглядят более массивными и зрелыми.

В межотломковой зоне преобладают гиалиновая и нововолокнистая хрящевая ткань с сосудами. Сеть грубоволокнистой костной ткани вокруг жизнеспособных осколков более выражена.

На некоторых участках она анастомозирует с аналогичной сетью других осколков, с периостальной и эндостальной мозолью (рис. 1.20-1.22).

К 60-90-м суткам грубоволокнистая костная ткань в области периостальной и эндостальной мозоли, а также у концов отломков начинает перестраиваться в пластинчатую. В некоторых местах можно заметить образование первичных остеонов. Костная ткань в межотломковой зоне сохраняет строение грубоволокнистой. Объем хрящевой ткани несколько уменьшается.

На 120-180-е сутки, как правило, можно определить периостальное и эндостальное сращение с помощью пластинчатой, а в межотломковой зоне — грубоволокнистой костной ткани. Пластинчатая костная ткань на некоторых участках периостальной мозоли приобретает остеонную организацию.

В межотломковой зоне значительно уменьшается количество хрящевых тканей. Местами хорошо прослеживается тенденция к замещению хрящевых тканей костной в форме деструкции хрящевых клеток на границе с новообразованной костью.

Консолидация огнестрельных переломов в метаэпифизарных зонах в целом протекает с теми же закономерностями, но более благоприятно, в более короткие сроки и с преобладанием костного компонента.

Патогенетические аспекты огнестрельных костно-мышечных ран конечностей

Основным патогенетическим механизмом морфофункциональных изменений в огнестрельной костно-мышечной ране, помимо непосредственного разрушающего воздействия ранящего снаряда на ткани сегмента, является нарушение регионарного кровотока и микрососудов.

В ответ на огнестрельное ранение даже без повреждения крупных сосудов развивается так называемый синдром местных нарушений тканевого кровотока (СМНТК), который манифестирует «кризисом микроциркуляции» и приводит к гипоксии тканей, прежде всего мышечной.

Гипоксия тканей сопровождается выходом свободной жидкости в интерстициальное пространство. При этом увеличивается объем мышц и повышается гидростатическое давление в костно-фасциальных и фасциальных футлярах.

Дальнейшее снижение перфузии тканей углубляет их гипоксию, приводя к возникновению ишемических некрозов (вторичный или поздний некроз). В загрязненных микроорганизмами ранах параллельно происходят селекция патогенной микрофлоры и ее накопление до критического уровня (106 микробных тел на 1 г ткани).

Микробные токсины, воздействуя на страдающие от гипоксии клетки, вызывают их цитолиз и высвобождение большого количества биологически активных веществ (гепарин, гистамин, серотонин, простагланди-ны и др.), которые усугубляют нарушения кровотока и гипоксию в тканях поврежденного сегмента.

Таким образом, замыкается порочный круг, приводящий к прогрессированию некротических процессов в огнестрельных костно-мышечных ранах.

Начальная фаза раневого процесса при огнестрельном равнении конечности (огнестрельном переломе) характеризуется 3 периодами нарушений периферического кровотока.

1-й период (1-2 ч после ранения) обусловлен реакцией сосудистой сети поврежденного сегмента на травму и системной реакцией «централизации кровообращения».

СМНТК особенно выражен, если одномоментная кровопотеря была значительной (более 0,5 л).

Этот период завершается восстановлением кровотока в ишемизированных тканях (мышцах) и одновременным нарастанием интерстициального отека. При кровопотере менее 0,3 л,

1. Раневая баллистика и морфология огнестрельных переломов сопровождающей легкие ранения, оба упомянутых процесса уравновешены. При массивной кровопотере равновесие смещается в сторону углубления СМНТК.

2-й период (4-10 ч после ранения) протекает на фоне существенного повышения гидростатического давления внутри костно-фасциальных футляров.

У легкораненых даже при минимальном объеме медицинской помощи (иммобилизация, антибиотики) этот период завершается восстановлением нормальных параметров тканевого кровотока.

В случаях более тяжелых повреждений (огнестрельные переломы) спонтанное восстановление кровотока возможно лишь в отдаленных от раневого канала тканях. Задержка лечебных мероприятий, направленных на коррекцию СМНТК, приводит к углублению ишемии тканей поврежденного сегмента.

3-й период нарушений периферического кровообращения менее постоянен и связан с развитием инфекционного процесса. В свою очередь течение инфекционного процесса прямо зависит от состояния периферического кровообращения в поврежденной конечности и степени ишемии тканей.

В зонах компенсированной ишемии инфекционный процесс, как правило, локализуется и отграничивается.

Глубокие нарушения тканевого кровотока с декомпенсированной ишемией у ослабленных раненых приводят к бурному прогрессированию инфекционного процесса, что проявляется флегмонами, параоссальными гнойными затеками, анаэробным целлюлитом вплоть до сепсиса и септического шока.

Развитие СМНТК определяется состоянием адаптационных резервов организма, степенью повреждения тканей в области ранения, содержанием и объемом проводимых лечебных мероприятий.

Уменьшение объема циркулирующей крови вследствие наружной и внутритканевой кровопотери вызывает компенсаторную реакцию сердечнососудистой системы, которая выражается в централизации кровообращения.

Задержка с восполнением кровопотери приводит к истощению адаптационных резервов сердечнососудистой системы и как следствие к нестабильности гемодинамики (травматический шок). Целесообразно начинать противошоковую терапию до развития декомпенсации кровообращения, в первые часы после ранения.

Восполнение объема циркулирующей крови у раненных в конечности существенно уменьшает выраженность СМНТК.

Источник: https://mirznanii.com/a/153231-2/boevye-povrezhdeniya-konechnostey-2

4 Раневая баллистика и морфология огнестрельных переломов

Раневая баллистика и морфология огнестрельных переломов

Раневая баллистика и морфология огнестрельных переломов.

Тяжесть огнестрельных переломов определяется высокой скоростью полета современных ранящих снарядов. Кинетическая энергия ранящего снаряда определяется прежде всего скоростью полета и, в меньшей степени, массой ранящего снаряда.

По данным скоростной киносъемки при прохождении пули или осколка через биологическую ткань вокруг раневого канала образуется временная пульсирующая полость, ее размеры прямо пропорциональны величине кинетической энергии. При высокой скорости полета пули размеры временной пульсирующей полости превышают калибр снаряда более чем в 15 раз.

Наблюдаемые перепады давления в момент пульсации полости приводят к внедрению в ткани объектов внешней среды и микробному загрязнению раны. Тяжесть ранений определяется также и баллистическими свойствами снарядов.

Конструктивные особенности современных пуль предусматривают смещение центра тяжести, что приводит к своеобразному феномену кувыркания и фрагментации снаряда. Разворот пули в тканях сопровождается дополнительной передачей энергии окружающим тканям и формированию обширной звездчатой формы раны выходного отверстия.

Экспериментальные исследования последних 3 лет показали существенное увеличение масштабов поражения пулями к автомату Никонова «Абакан», конструктивные особенности которого предусматривают осуществление сдвоенного выстрела с интервалом 30 мл/сек.

Опыт также показал, что не менее тяжелые повреждения могут быть нанесены пулями к пистолету Макарова, других систем ближнего боя, к винтовкам СВД, ВСС, крупнокалиберными пулями, обладающими высокой устойчивостью полета и в то же время минимальные повреждения пулями калибра 5,45 мм, не потерявшими устойчивости в тканях.

Масштабы повреждения тканей зависят также от их физических свойств: при прохождении ранящего снаряда через однородные ткани (например, мышцы) происходит равномерная отдача кинетической энергии.

Однако, в силу неравномерности сокращения мышечных волокон раневой канал в мышцах не имеет прямолинейного направления. При встрече ранящего снаряда с более плотными преградами (например, костью) происходит максимальная передача кинетической энергии тканям по типу взрыва.

В результате этого образуются множественные вторичные ранящие снаряды, которые усугубляют тяжесть ранения и образуют дополнительные раневые каналы.

В механизме разрушения диафизарной и метафизарной зон костей имеются определенные особенности. При повреждении кортикальной зоны костей наблюдаются крупнооскольчатые переломы с продольными растрескиваниями кости, раздробленные, при которых линии переломов могут достигать суставов, а также мелкооскольчатые переломы, в т. ч.

с образованием первичных дефектов костной ткани. Вместе с тем, значительного смещения отломков в 60% наблюдений не происходит в силу травматического шока нервно-мышечного аппарата на протяжении (парабиоз) и временной потери способности мышц к сокращению.

Ранения губчатых костей часто сопровождаются дырчатыми переломами или крупнооскольчатыми, проникающими в сустав.

Ранения крупных суставов могут быть слепыми и сквозными, с повреждением или без повреждения сочленяющихся костей. При этом могут наблюдаться разрушения, обширные или ограниченные повреждения костей, образующих сустав.

Имеются характерные отличия в масштабах повреждения тканей при огнестрельных переломах двукостных сегментов. В зависимости от направления полета снаряда может быть перелом одной или двух костей. Зоны разрушения тканей будут определятся воздействием как первичных, так и вторичных ранящих снарядов.

Ранения высокоскоростными снарядами характеризуются большей частотой повреждений магистральных сосудов и нервов не только в результате прямого попадания, но и на некотором удалении от раневого канала. Такие, так называемые дистантные, повреждения, могут сопровождаться острой или вторичной окклюзией сосуда.

В результате огнестрельного ранения образуются:

1.                     Раневой канал.

2.                     Зона травматического или первичного некроза – это стенка раневого канала с непосредственно примыкающими к нему мышцами.

3.                     Зона молекулярного сотрясения.

Размеры этих зон зависят, в основном, от величины кинетической энергии и формы ранящего снаряда. Границы первичного некроза определяются с трудом, в основном по наличию раневого детрита и разрушенных тканей раневой стенки (до 1 см). Менее достоверными признаками нежизнеспособных мышц являются отсутствие кровотечения и сократимости, изменение их обычной окраски и эластичности.

Спустя 2-3 суток после ранения в результате гипоксии тканей и нарушения метаболических процессов вокруг раневого канала формируется зона вторичного некроза.

Размеры ее зависят от величины переданной кинетической энергии снаряда, но, главным образом, от степени нарушения микроциркуляции крови в паравульнарных тканях, обусловленного как первичной реакцией сосудов, так и выраженностью посттравматического отека.

Под влиянием целенаправленной терапии зона вторичного некроза может быть значительно уменьшена.

При лечении огнестрельных переломов необходимо учитывать также зоны повреждения костной ткани, которые определяются, в частности, по состоянию костного мозга по мере удаления от раневого канала:

– зона сплошной геморрагической инфильтрации костного мозга;

– зона сливных кровоизлияний;

– зона точечных кровоизлияний;

– зона отдельных жировых некрозов.

Источник: https://studizba.com/lectures/77-medicina/1093-boevye-povrezhdeniya-oporno-dvigatelnogo-apparata/20149-4-ranevaya-ballistika-i-morfologiya-ognestrelnyh-perelomov.html

Medic-studio
Добавить комментарий