ТРОФИЧЕСКОЕ ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ДРУГИЕ ОРГАНЫ И ТКАНИ.

Механизмы трофического влияния нервной системы на ткани и органы. Трофогены и патотрофогены

ТРОФИЧЕСКОЕ ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ДРУГИЕ ОРГАНЫ И ТКАНИ.

Современные представления о нервно-трофической функции.

Под нервной трофикой понимают трофические влияния нейрона, которые обеспечивают нормальную жизнедеятельность иннервируемых им структур – других нейронов и тканей. Нейротрофическое влияние – является частным случаем трофических взаимодействий между клетками и тканями, клетками одной популяции (нейрон – нейрон) и разных популяции (нейрон – исполнительная клетка).

Значение взаимодействия клеток одной популяции состоит в поддержании их оптимального для организма количества в рамках детерминированного региона, координации функции и распределения нагрузки в соответствии с принципом функционально-структурной гетерогенности, сохранения функциональных возможностей органа и их оптимального структурного обеспечения. Значение взаимодействия клеток разных популяций состоит в обеспечении их питания и созревания, соответствия друг другу по уровню дифференцировки, функциональным и структурным возможностям, взаиморегуляции, определяющей целостность органа на основе взаимодействия разных тканей и т. п.

Межклеточное взаимодействие нервно-трофического характера осуществляется с помощью нейроплазматического тока, т. е. движения нейроплазмы от ядра к периферии нейрона и в обратном направлении. Ток нейроплазмы – универсальное явление, характерное для животных всех видов, имеющих нервную систему: он происходит как в центральных, так и в периферических нейронах.

Принято считать, что единство и целостность организма определяются прежде всего деятельность нервной системы, ее импульсной (сигнальной) и рефлекторной активностью, которая обеспечивает функциональные связи между клетками, органами и анатомо-физиологическими системами.

В настоящее время в литературе господствующей является точка зрения, согласно которой каждый нейрон и иннервируемые им клетками, а также клетки-саттелиты (глия, швановские клетки, клетки соединительной ткани) составляют регионарную трофическую микросистему.

Иннервируемые структуры, со своей стороны оказывают трофические влияния на иннервирующий их нейрон. Эта система функционирует как единое образование, и это единство обеспечивается межклеточным взаимодействием с помощью трофических факторов, называемыми “трофогенами”, или “трофинами”.

Повреждение указанного трофического контура в виде нарушения или блокады идущего в обоих направлениях аксоплазматического тока, транспортирующего трофические факторы, ведет к возникновению дистрофического процесса не только в иннервируемой структуре (мышце, коже, других нейронах), но и в иннервирующем нейроне.

Трофогены – вещества белковой и, возможно, нуклеиновой или другой природы, выделяются из окончаний аксона и поступают в синаптическую щель, из которой они перемещаются в иннервируемую клетку.

К трофическим факторам, в частности, относятся вещества белковой природы, способствующие росту, дифференцировке нейронов, например фактор роста нервов (Леви-Монтальчини), фактор роста фибробластов и другие разнообразные по своему составу и свойствам белки.

Эти соединения в большом количестве обнаруживаются в развивающейся нервной системе в эмбриональном периоде, а также при регенерации нервов после их повреждения. При их добавлении к культуре нейронов они предотвращают гибель части клеток (явление, подобное так называемой “запрограммированной” гибели нейронов).

Рост регенерирующего аксона происходит при обязательном участии трофических факторов, синтез которых усиливается при травмах нервной ткани.

Биосинтез трофогенов регулируется агентами, которые высвобождаются при повреждении мембран нейронов или их естественной стимуляции, а также в случае угнетения активности нейронов.

В плазматической мембране нейронов содержатся ганглиозиды (сиалогликолипиды), например GM-I, которые усиливают рост и регенерацию нервов, повышают устойчивость нейронов к повреждению, вызывают гипертрофию сохранившихся нервных клеток.

Предполагают, что ганглиозиды активируют образование трофогенов и вторичных мессенджеров. К регуляторам этого процесса относят также классические нейромедиаторы, которые изменяют уровень вторичных внутриклеточных мессенджеров; цАМФ и соответственно цАМФ-зависимые протеинкиназы могут воздействовать на ядерный аппарат и изменять активность генов, определяющих образование трофических факторов.

Известно, что повышение уровня цАМФ в интра- или экстрацеллюлярной среде ингибирует митотическую активность клеток, а снижение ее уровня способствует делению клеток. Обратное влияние на пролиферацию клеток оказывает цАМФ.

Наряду с этим цАМФ и активаторы аденилатциклазы, определяющей синтез цАМФ стимулируют дифференцировку клеток. Вероятно, трофогены разных классов, обеспечивающие пролиферацию и созревание клеток-мишеней реализуют влияние во многом через различные циклические нуклеотиды.

Сходную функцию могут выполнять активные пептиды (энкефалины, b-эндорфин, субстанция Р и др. ), играющие роль модуляторов нейропередачи. Они также имеет большое значение как индукторы трофогенов или даже непосредственно выполняют функцию трофогенов.

Данные о важной роли нейромедиаторов и активных пептидов в осуществлении нервнотрофической функции свидетельствуют о тесной связи функциональных и трофических влияний.

Установлено, что трофическое влияние нейрона на клетку-мишень реализует через ее генетический аппарат. Получено много доказательств того, что нервнотрофические влияния определяют степень дифференцировки ткани и денервация приводит к утрате дифференцировки.

По своему метаболизму, структуре и функциональным свойствам денервированная ткань приближается к эмбриональной.

Поступая в клетку-мишень путем эндоцитоза, трофогены непосредственно включается в структурно-метаболические процессы или воздействуют на генетический аппарат, обуславливая либо экспрессию, либо репрессию определенных генов.

При непосредственном включении формируются сравнительно кратковременные изменения обмена веществ и ультраструктуры клетки, а при опосредованном включении, через генетический аппарат, долговременные и устойчивые изменения свойств клетки-мишени.

В частности, в процессе эмбрионального развития и при регенерации перерезанных аксонов врастающие в ткань нервные волокна выделяют трофогены, обеспечивающие созревание и высокую дифференцировку регулируемых клеток. Наоборот, сами эти клетки выделяют свои трофогены, ориентирующие и стимулирующие рост нервных волокон, а также обеспечивающие установление их синаптических связей.

Трофогены определяют функциональные свойства иннервируемых клеток, особенности обмена и ультраструктуры, а также степень их дифференцировки. При постганглионарной денервации чувствительность этих клеток-мишеней к нейромедиаторам резко возрастает.

Известно, что к моменту рождения вся поверхность волокон скелетных мышц животных обладает чувствительностью к нейромедиатору ацетилхолину, а в процессе постнатального развития зона холинорецепции вновь расширяется, распространяясь на всю поверхность мышечного волокна, однако она суживается при реиннервации. Установлено, что в процессе врастания нервных волокон в мышцу трофогены, переходя в нее транссинаптическим путем, вызывают репрессию синтеза холинорецепторов на уровне транскрипции, поскольку в условиях деренвации их усиленное образование тормозится ингибиторами синтеза белка и РНК.

При деренвации (перерезка или экстирпация нервных элементов, иммуносимпатэктомия) возможно растормаживание пролиферативной потенции, например эпителия роговицы и ткани хрусталика глаза, клеток кроветвоной ткани.

В последнем случае при смешанной (афферентно-эфферентной) денервации участка костного мозга увеличивается количество клеток с хромосомными аберрациями.

Вероятно, в этом случае происходит не только нарушение метаболизма на деренвируемом участке, но и расстройство элиминации мутантных клеток.

Трофические функции свойственны не только конечных нейронам, регулирующим деятельность клеток исполнительных органов, но также центральным и афферентным нейронам.

Известно, что перезка афферентных нервов вызывает дистрофические изменения в тканях, в то же время вещества, образующиеся в этой ткани, могут поступать по афферентным нервам в чувствительные нейронаы и даже в нейроны ЦНС.

Рядом авторов показано, что перерезка как нейронов, так и дендритов чувствительных нейронов тройничного (гассерова) узла приводит к одинаковым дистрофическим изменениям в роговице глаза белых крыс.

Н. И. Грищенков и др. авторы выделили и описали общий нейродистрофический синдром, возникающий после перенесенных энцефалитов, черепно-мозговых травм, сосудистых и других поражений мозга. Этот синдром проявляется распространенной липодистрофией, гемиатрофией лица, пигментной дистрофией Лешке, тотальным облысением, нарушением трофики костной ткани, отеками кожи и подкожной жировой клетчатки.

Крайне тяжелые изменения обмена веществ с развитием атрофии или дистрофии выявляются при различных по происхождению поражениях эфферентных нервов, обеспечивающих трофическими влияниями слизистые оболочки, кожу, мышцы, кости, а также внутренние органы. Нарушения трофической функции эфферентных нейронов могут возникать не только в результате их непосредственного поражения, но и вследствие нарушения деятельности центральных, в том числе вставочных, или афферентных нейронов.

В то же время ткани-мишени ретроградко могут оказывать трофические влияния на эффекторные нейроны, а через них на вставочные, центральные и афферентные нейроны. В этом смысле кажется справедливым положение о том, что каждый нерв, какую бы функцию он ни выполнял, является одновременно и трофическим нервом.

По мнению Г. Н. Крыжановского (1989), нервная система представляет собой единую нервно-трофическую сеть, в которой соседние и отделенные нейроны обмениваются не только импульсами, но и трофическими сигналами, а также своим пластическим материалом.

Нарушения нервной трофики.

Нервно-трофическая функция может нарушаться как при поражении самой нервной системы, так и при патологических процессах в регулируемых органах. Это приводит к выраженным расстройствам в них обмена веществ, структуры и деятельности, которые проявляются, в частности, в форме дистрофии.

Предполагают, что возникновение собственно нервно-трофических расстройств, т. е.

связанных с нейроплазматическим током, возможно при уменьшении (прекращении) или увеличении поступления в регулируемые клетки трофогенов, а также в случае поступления ненормальных, патогенных трофических факторов или патотрофогенов.

Наиболее изученным механизмом нарушения нервной трофики клеток-мишений является прекращение поступления в них трофических факторов, что имеет место при многих болезнях нервной системы, особенно при многих болезнях нервной системы, особенно при так называемых болезнях нервной системы, особенно при так называемых болезнях старости.

В патологически измененных клетках возникают патотрофогены. Так, в эпилептизированных нейронах могут возникать вещества, которые поступая с аксоплазматическим током в другие нейроны, индуцируют у них эпилептические свойства.

В механизмах “запрограммированной смерти” нейронов принимают участие патологические белки – дегенерины.

Роль патотрофогена играет, по-видимому, b-амилоид, находящийся в большом количестве в бляшках в мозговой ткани при болезни Альцгеймера.

Характерной особенностью денервированной ткани является упрощение структурой ткани является упрощение структурной организации ее органелл, которые становятся похожими на эмбриональные.

В денервированной ткани обычно уменьшается концентрация РНК и белков, снижается активность дыхательных ферментов и повышается активность ферментов анаэробного гликолиза.

В мышце при денервации изменяются физико-химические свойства миозина и снижается его АТФазная активность.

При местной нейрогенной дистрофии, возникающей в результате нарушения локальной иннервации, обычно развивается прогрессирующий язвенный процесс. Кроме местной дистрофии, возможет генерализованный дистрофический процесс, который формируется при повреждении высших вегетативных центров.

В этих ситуациях наблюдается поражение слизистой оболочки полости рта (язвы, афтозный стоматит), выпадение зубов, кровоизлияние в легких и очаговая пневмония, эрозии и кровоизлияния в слизистой желудка и кишечника.

Вследствие ослабления внутриклеточной и клеточной регенрации такие язвенные процессы приобретают хронический рецидивирующий характер, имеют тенденцию к генерализации, нередко происходит отторжение органа или его участка.

Такие однотипные изменения могут иметь месть при разных хронических нервных поражениях, поэтому они получили название стандартной формы, нервной дистрофии. Возможно, что в механизмах возникновения этой формы патологии принимают участие патотрофогены.

Необходимо отметить, что механизмы развития нейрогенной дистрофии в разных органах нельзя свести только к дефициту трофогенов или изменению их свойств, хотя этот механизм, по-видимому, один из наиболее важных. Во всяком случае многие проявления нейродистрофии при денервации воспроизводятся блокатором аксоплазматического токаколхицином.

При денервации большое значение может иметь выпадение действия на клетки-мишени соответствующего нейромедиатора и выключение или ослабление функции органа.

Это связано с тем, что нейромедиаторы сами могут оказывать регулирующее влияние на образование и высвобождение трофогенов из нервных окончаний и клеток-мишеней через циклические нуклеотиды или другие вторичные мессенджеры.

Кроме того, действие нейромедиаторов обязательно включает метаболический компонент, направленный на трофическое обеспечение усиленной функции клетки. Наконец, выпадение функции (например, поперечно-полосатых мышц) или ее ослабление (при денервации) само по себе отражается на обмене веществ и приводит к атрофии вследствие бездеятельности.

Помимо выпадения трофических и нейромедиаторных влияний, в развитии нейрогенной атрофии и дистрофии несомненное значение имеют возникающие при этом расстройства органного кровообращения и микроциркуляции.

В развитии нейрогенной дистрофии важную роль играет также и изменение реактивности денервированной ткани по отношению к эндокринным влияниям, кининов и простагландинов, а также аутоиммунная реакция организма.



Источник: http://biofile.ru/bio/10505.html

Виды влияний нервной системы и механизмы их реализации

ТРОФИЧЕСКОЕ ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ДРУГИЕ ОРГАНЫ И ТКАНИ.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса – ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший “Салат из свеклы с чесноком”

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека – Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков – Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) – В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

В литературе встречается несколько понятий, отражающих виды и механизм влияния нервной системы на деятельность органов и тканей. Целесообразно выделить два вида влияний нервной системы на органы – пусковое и модулирующее (корригирующее).

А. Пусковое влияние. Это влияние вызывает деятельность органа, находящегося в покое; прекращение импульсации, вызвавшей деятельность органа, ведет к возвращению его в исходное

состояние.

Примером такого влияния может служить запуск секреции пищеварительных желез на фоне их функционального покоя; инициация сокращений покоящейся скелетной мышцы при поступлении к ней импульсов от мотонейронов спинного мозга или от мотонейронов ствола мозга По эфферентным (двигательным) нервным волокнам. После прекращения импульсации в нервных волокнах, в частности в волокнах соматической нервной системы, сокращение мышцы также прекращается – мышца расслабляется.

Б. Модулирующее (корригирующее) влияние. Данный вид влияния изменяет интенсивность деятельности органа. Оно распространяется как на органы, деятельность которых без нервных влияний невозможна, так и на органы, которые могут работать без пускового влияния нервной системы.

Примером модулирующего влияния на уже работающий орган может служить усиление или угнетение секреции пищеварительных желез, усиление или ослабление сокращения скелетной мышцы.

Пример модулирующего влияния нервной системы на органы, которые могут работать в автоматическом режиме, – регуляция деятельности сердца, тонуса сосудов. Этот вид влияния может быть разнонаправленным с помощью одного и того же нерва на разные органы.

Так, модулирующее влияние блуждающего нерва на сердце выражается в угнетении его сокращений, но этот же нерв может оказывать пусковое влияние на пищеварительные железы, покоящуюся гладкую мышцу желудка, тонкой кишки.

Модулирующее влияние осуществляется:

• посредством изменения характера электрических процессов в возбудимых клетках органа возбуждения (деполяризация) или торможения (гиперполяризация);

•за счет изменения кровоснабжения органа (сосудодвигательный эффект);

•с помощью изменения интенсивности обмена веществ в органе (трофическое действие нервной системы).

Идею о трофическом действии нервной системы сформулировал И.П.Павлов. В опыте на собаках он обнаружил симпатическую ветвь, идущую к сердцу, раздражение которой вызывает усиление сердечных сокращений без изменения частоты сокращений (усиливающий нерв Павлова).

Впоследствии было показано, что раздражение симпатического нерва действительно усиливает в сердце обменные процессы. Развивая идею И.П.Павлова, Л.О.Орбели и А.Г.Гинецинский в 20-х годах XX в. открыли феномен усиления сокращений утомленной скелетной мышцы при раздражении идущего к ней симпатического нерва (феномен Орбели-Гинецинского, рис.

1.1). Считают, что усиление сокращений утомленной мышцы в опыте Орбели-Гинецинского связано с активацией в ней обменных (трофических) процессов под влиянием норадреналина.

Полагают, что норадреналин, выделяющийся из окончаний постганглионарных симпатических сосудистых сплетений, активируя специфические рецепторы мембраны мышечных волокон, запускает каскад химических реакций в цитоплазме, ускоряющих обменные (трофические) процессы.

Рис. 1.1.

Повышение работоспособности утомленной изолированной икроножной мышцы лягушки при раздражении симпатического нерва. Сокращения мышцы (а) вызываются ритмическим (30 мин) раздражением двигательных нервных волокон. Моментам раздражения симпатического нерва соответствуют поднятия сигнальной линии (б)

В дальнейшем было установлено, что раздражение симпатических нервов не только улучшает функциональные характеристики скелетных мышц, но и повышает возбудимость периферических рецепторов и в целом – возбудимость структур ЦНС. Такое действие симпатической нервной системы Л. О.

Орбели назваладаптационно-трофическим. Трофическое действие на ткань присуще всем нервам, но наиболее ярко оно выражено у симпатической нервной системы. Предполагается наличие трофогенов в нервных окончаниях.

На роль трофогенов претендуют нуклеотиды, некоторые аминокислоты, простагландины, катехоламины, серотонин, ацетилхолин, сложные липиды, ганглиозиды. Многие из перечисленных веществ являются медиаторами. Понятие «трофоген», по-видимому, является собирательным.

Трофическое действие соматической нервной системы ярко иллюстрируется результатом перерезки нервных стволов. Так, в норме плотность внесинаптических холинорецепторов на мышечном волокне в 1000 раз меньше, чем на постсинаптической мембране.

Однако уже через несколько дней после денервации число рецепторов на мышечном волокне сильно возрастает и становится таким, как у новорожденных. Это связано с прекращением трофических воздействий нервного волокна.

Трофическое действие на иннервируемые ткани оказывают и афферентные нервные волокна.

Так, адекватная стимуляция или раздражение электрическим током терминалей специфической популяции первичных сенсорных нейронов, тела которых лежат в спинальных ганглиях, ведет к освобождению из терминалей афферентных волокон химических веществ, оказывающих специфическое действие на окружающую ткань.

Этими веществами являются преимущественно нейропептиды. Наиболее часто при этом выявляются субстанция Р и пептид, родственный гену кальцитонина. Они не только несут афферентную информацию, но и оказывают трофическое влияние на иннервируемые ткани.

В свою очередь биологически активные вещества, вырабатываемые разными клетками организма, оказывают трофическое действие на саму нервную систему. Об этом, в частности, свидетельствует угнетение активности ферментов, ответственных за синтез ацетилхолина в преганглионарных симпатических нейронах после разрушения ганглионарного симпатического нейрона.

Преганглионарные симпатические нейроны находятся в боковых рогах спинного мозга. По-видимому, имеется несколько нейрональных факторов, регулирующих рост, развитие нервных клеток и функционирование зрелых нервных клеток. Одно из таких веществ – фактор роста нервов (ФРН).

Это инсулиноподобное вещество наиболее сильно стимулирует рост симпатических и спинномозговых ганглиев. Если в организм новорожденных животных ввести антитела к ФРН, то в симпатической нервной системе развиваются дегенеративные изменения.

Наибольшее количество ФРН вырабатывается в слюнных железах, продуцируется ФРН также гладкими мышечными волокнами стенок внутренних органов. Обнаружено также вещество, регулирующее рост и развитие мотонейронов спинного мозга.

Считают, чтоадаптационно-трофическое действие оказывают многие нейропептиды: либерины, соматостатин, энкефалины, эндорфины, брадикинин, нейротензин, холецистокинин, фрагменты АКТГ, окситоцин.

Таким образом, и соматическая, и вегетативная нервная система могут оказывать как пусковое, так и модулирующее влияние.

Однако пусковое влияние нервной системы для скелетной мышцы (запуск или прекращение ее сокращений) осуществляется только с помощью соматической нервной системы, а модулирующее (изменение силы сокращений) – с помощью и соматической, и вегетативной нервной системы.

Например, активация симпатической нервной системы ведет к усилению сокращения утомленной скелетной мышцы. Пусковое и модулирующее влияние на внутренние органы осуществляется только с помощью вегетативной нервной системы.

Источник: https://megapredmet.ru/1-14165.html

Трофическая функция нервной системы

ТРОФИЧЕСКОЕ ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ДРУГИЕ ОРГАНЫ И ТКАНИ.

Трофическая функция нервной системы проявляется в ее регулирующем влиянии на обмен веществ и питание тканей и органов.

Первые указания на трофическую функцию нервной системы основывались на результатах экспериментов с перерезкой нервов, которая нередко вызывает различные нарушения в денервированных тканях.

Эти факты находятся в полном соответствии с многочисленными клиническими наблюдениями патологических изменений в коже, костях и внутренних органах, которые иногда возникают у больных при поражениях нервов и нервных центров (рис. 187).

Наряду с данными патологов физиологами, изучающими нормальный организм, были также получены указания на наличие трофической функции нервной системы. Так. Р. Гейден-гайн установил, что раздражение симпатических нервов слюнной железы вызывает выделение вязкой, густой слюны, богатой органическими веществами, и объяснил этот факт тем, что симпатические нервные волокна регулируют трофику, питание клеток слюнной железы.Рис.  187. Трофическая язва на большом пальце стопы после повреждения седалищного нерва (по А. Д. Созон-Ярошевичу).

Учение о трофической функции нервной системы было развито И. П. Павловым. Истоком его представлений в этой области явилось открытие им нервов, усиливающих и ослабляющих сокращения сердечной мышцы.

Действие этих нервов было объяснено влиянием их на обмен вещест и основные физиологические свойства сердечной мышцы. В дальнейшем И. П. Павлов пришел к убеждению, что не только сердце, но и все другие органы и ткани снабжены трофическими нервами, влияющими «жизненный химизм». Эти нервы передают импульсы к периферическим органам, являясь эффекторными путями трофических рефлексов.

Трофические нервы,  действуя на обмен веществ, изменяют тем самым основные физиологические свойства тканей: их возбудимость, проводимость, работоспособность.

О наличии трофического влияния нервной системы свидетельствуют опыты, показавшие, что раздражение симпатических нервов влияет на окислительно-восстановительные процессь в мышце, на тканевое дыхание, физико-химические, в частности упруговязкие, свойства мышечной ткани, ферментативную активность и обмен аденозинтрифосфорной кислоты, имеющей столь важную роль в химической динамике мышечного сокращения.

Важную роль в осуществлении трофических влияний на ткани оказывают и афферентные нервные волокна. В наиболее четкой форме об этом свидетельствуют опыты с перерезкой тройничного нерва или разрушением гассерова узла, где располагаются тела рецепторных нейронов, отростки которых образуют этот нерв. В результате подобных опытов возникают язвы на денервированной роговичной оболочке глаза.

Согласно исследованиям А. В. Лебединского, причиной изъязвления роговичной оболочки после перерезки тройничного нерва является  нарушение процесса регенерации, связанное с торможением митотической активности клеток, отчего постоянно происходящее разрушение клеток компенсируется образованием новых.

Гистохимические исследования показали, что в основе торможения митотической активности, наступает сразу же после денервации ткани, лежат глубокие изменения клеточного обмена, в частности распад нуклеиновых соединений.

Механизм трофического влияния рецепторных нейронов пока не ясен — допускается существование каких-то  биологически активных веществ, секретируемых в области рецепторов.

Обширные исследования, демонстрирующие трофическую роль нервной системы и трофических рефлексов, бы проведены А. Д. Сперанским.

Им показано, что перерезка седалищного нерва и введение в его центральный отрезок раздражающих веществ, например желчи или слабого раствора формалина, ведут к развитию долго не заживающих язв и к гангренозному распаду тканей не только на соответствующей конечности, но нередко также в отдаленных участках тела, не иннервированных поврежденным нервом, например в желудке и кинечнике.

В осуществлении трофических влияний на организм принимает участие каждый отдел центральной нервной системы, но особо важная принадлежит гипоталамусу, где находятся центры регуляции обмена веществ, и коре больших полушарий головного мозга.

Роль гипоталамуса демонстрируется многочисленными экспериментами А. Д.   Сперанского. Так, наложение на турецкое седло основной кости черепа стеклянного шарика величиной с горошину, вызывая хроническое раздражение ядер промежуточного мозга (гипоталамуса), к развитию тяжелых трофических язв на коже и в пищеварительном тракте (рис. 188).

Клинические наблюдения над больными с поражениями гипоталамуса подтверждают данные экспериментов и показывают, что при этом развиваются расстройства тканевого обмена веществ — дистрофии и происходит нарушения структуры органов и тканей.

Трофические расстройства у животных наблюдаются и при удалении коры больших полушарий головного мозга (Э. А. Асратян и др.). Значение коры больших полушарий в трофике тканей было показано М. К. Петровой, которая искусственно создавала трудные условия для высшей нервной деятельности животного и отмечала при этом появление трофических нарушений.

Рис. 188. Трофическое поражение тканей щеки у собаки после наложения стеклянного шарика на турецкое седло на основании черепа (по А. Д. Сперанскому).

Источник: https://www.amedgrup.ru/trof.html

Нервная трофика и дистрофический процесс

ТРОФИЧЕСКОЕ ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ДРУГИЕ ОРГАНЫ И ТКАНИ.
Нервная трофика влияние нервов на ткань, обусловливающее изменение обмена веществ в ней согласно потребностям в определенный момент. Трофическое действие нервов тесно связано с другими их функциями (чувствительной, двигательной, секреторной) и вместе с ними обеспечивает оптимальную функцию каждого органа.

Первые доказательства того, что нервы имеют трофическую функцию, получил еще в 1824 г. французский ученый Ф. Мажанди. В экспериментах с перерезкой тройничного нерва у кроликов он обнаружил образование язв в зоне чувствительной денервации (глаз; рис. 77).

В дальнейшем модель нейрогенной язвы многократно воспроизводилась и при перерезке других нервов, например седалищного. Трофические расстройства возникают в любом органе, если нарушается его иннервация посредством вмешательства на нервах (афферентных, эфферентных, автономных) или нервных центрах.

Медицинская практика свидетельствует также о том, что повреждение нервов (травма, воспаление) угрожает образованием язвы или другими расстройствами (отек, эрозия, некроз) в соответствующей зоне.

Биохимические, структурные и функциональные изменения в денервированных тканях.

Экспериментальные исследования показывают, что патогенные влияния на периферический нерв всегда обусловливают изменения обмена веществ (углеводов, липидов, белков, нуклеиновых кислот и т. д.) в соответствующем органе. Эти изменения носят не только количественный, но и качественный характер.

Общая тенденция изменений метаболизма заключается в том, что он приобретает эмбриональный характер, т. е. гликолитические процессы начинают преобладать над окислительными. Ослабевает мощность цикла Кребса, уменьшается выход макроэргов, снижается энергетический потенциал.

При нарушении иннервации в тканях возникают характерные морфологические изменения. Если речь идет о роговице, коже или слизистой оболочке, то в них последовательно развиваются все стадии воспаления. Как следствие, образуется язва, не имеющая тенденции к заживлению.

В детальных исследованиях установлены изменения органоидов, в частности уменьшение количества митохондрий, осветление их матрикса. Очевидно, с этим связано нарушение окислительного фосфорилирования и Са2+-аккумулирующей способности митохондрий, а одновременно — и энергетических возможностей клетки. В денервированных тканях может снижаться митотическая активность.

Денервированная ткань реагирует на многие гуморальные факгоры не так, как нормальная. Речь идет прежде всего о медиаторах нервной системы. В. Кеннон установил, что скелетные мышцы, лишенные в одном случае симпатических, а в другом — холинергических нервов, реагируют соответственно на адреналин и ацетилхолин сильнее, чем в норме.

Так был открыт закон денервации — повышенной чувствительности денервированных структур. В частности, это обусловлено тем, что холинорецепторы, которые в норме сосредоточены лишь в области нервно-мышечных синапсов, после денервации появляются на всей поверхности мембраны мышечного волокна.

Необычность ответа денервированных структур может заключаться не только в его усилении, но и в извращении, когда, например, вместо расслабления мышц сосудов происходит их сокращение, что может существенно отразиться на состоянии сосудов, кровообращения тканей и т. д.

Важным является вопрос о существовании специальных трофических нервов.В свое время Ф. Мажанди высказал мнение, что кроме чувствительных, двигательных и секреторных нервов существуют еще особые трофические, которые регулируют питание ткани.Позднее И.П.

Павлов в эксперименте на животных среди нервов, идущих к сердцу, выделил такую ветвь, которая, не влияя на кровообращение, повышала силу его сокращений. Этот нерв он назвал усиливающим и признал его сугубо трофическим. Полную и гармоническую иннервацию органа, по мнению И.П.

Павлова, обеспечивают три вида нервов: функциональные, сосудодвигательные (регулирующие поступление питательных веществ) и трофические (определяющие окончательную утилизацию этих веществ).Такого же мнения придерживался и Л.А. Орбели, который вместе с А.Г. Гинецинским в 1924 г.

доказал, что изолированная (без кровообращения) мышца лягушки, утомленная при длительном раздражении двигательного нерва, снова начинает сокращаться, если стимулировать симпатический нерв.

Трофическая функция симпатического нерва — это влияние на метаболизм, подготовка органа к действию и адаптация его к будущей работе, которая осуществляется благодаря двигательному нерву.В то же время А.Д.

Сперанский полагал, что все нервы влияют на метаболизм тканей, нетрофических нервов нет, “нерв только потому и функциональный, что он трофический”.

Механизмы трофического влияния нервов.

Нервные импульсы, приводя в действие орган (например, мышцу), одновременно изменяют обмен веществ в клетке по схеме: медиатор—активация вторичных посредников—активация генетического аппарата, ферментов.

Обмен веществ в клетках изменяется также под влиянием сосудодвигательных нервов, которые расширяют или суживают сосуды и таким образом изменяют приток питательных веществ. Кроме этих двух (функционального (импульсного) и сосудистого) влияний нервной системы на обмен веществ у нервной клетки есть третье — неимпульсное, или собственно трофическое. Оно обеспечивается движением аксоплазмы как от нейрона к эффекторной клетке (ортоградно), так и в обратном направлении (ретроградно). С помощью ортоградного аксотока иннервированные клетки получают трофические вещества, продуцирующиеся нейронами, а посредством ретроградного аксотока клетки-мишени (мышечные, эпителиальные) поставляют такие вещества нейронам. Эти вещества получили название нейротрофических факторов, или нейротрофинов.

В настоящее время из различных нервных струкгур, клеток-сателлитов (глиальные клетки, леммоциты), а также из тканей-мишеней и некоторых органов выделены отдельные нейротрофины, расшифрована их структура и изучено биологическое действие. Это фактор роста нервов и родственные с ним пептиды, такие как мозговой нейротрофический фактор, нейротрофины-3, -4, -5, -6.

Мозговой нейротрофический фактор образуется непосредственно в нейронах, транспортируется к нервным окончаниям и, выделяясь оттуда, поддерживает нормальное состояние постсинаптического нейрона.

Другие нейротрофины связываются с рецепторами нервных окончаний, попадают в нейроплазму и ретроградно перемещаются к телу нейрона, где активируют синтез веществ, необходимый для жизнедеятельности нервной клетки.К этому семейству нейротрофинов в определенной мере относятся фактор роста эпидермиса, трансформирующие факторы роста (α и β), инсулиноподобные факторы роста I и II.

Нейротрофические факторы включают нейролейкин, цилиарный и глиальный нейротрофические факторы, тромбоцитарный фактор роста, а также кислый и основной факторы роста фибробластов. Нейротрофические свойства выявлены у субстанции Р, опиоидных пептидов, атриального натрийуретрического пептида.

Кроме того, нейротрофическое действие оказывают гликолипиды — ганглиозиды, а также некоторые гормоны — тироксин, тестостерон, кортикотропин, инсулин.Наиболее хорошо изучен фактор роста нервов. Он содержится в различных тканях животных и человека, но наибольшее количество его выявлено в слюнных железах самцов мышей.

Этот фактор способствует эмбриональному развитию и выживанию симпатических и некоторых сенсорных нейронов, а также холинергических нейронов ЦНС, ответственных за память. Если получить антитела к фактору роста нервов и ввести их новорожденным животным, то можно вызвать почти полную деструкцию симпатических узлов (иммуносимпатэктомия).

Главными объектами действия фактора роста эпидермиса являются глиальные клетки (астроциты), леммоциты, клетки ЦНС, которые в свою очередь продуцируют такие нейротрофические факторы, как глиальный, цилиарный и фактор роста нервов и др.Цилиарный нейротрофический фактор создает условия для выживания моторных, сенсорных и симпатических нейронов.

Нейролейкин влияет как на двигательные, так и на чувствительные нейроны и продуцируется слюнными железами, скелетными мышцами и стимулированными Т-лимфоцитами.Экспериментальные исследования доказали, что дефицит нейротрофинов или их рецепторов может обусловливать развитие нейродегенеративных болезней.

Например, дефицит мозгового нейротрофического фактора у мышей вызывает гибель периферических чувствительных нейронов и дегенеративные изменения в нейронах вестибулярных нервов. У животных с наследственным нарушением образования нейротрофина-3 наблюдается гибель механорецепторов кожи.

В патогенезе нейрогенной дистрофии определяющую роль играет нарушение синтеза и аксонального транспорта нейротрофических факторов. Однако, анализируя процесс, следует руководствоваться тем, что трофическая функция осуществляется по принципу рефлекса и нужно оценивать значение каждого его звена в развитии дистрофического процесса.

Чувствительный нерв, очевидно, играет в этом особую роль, поскольку, во-первых, прерывается передача информации в нервный центр из зоны денервации, во-вторых — поврежденный чувствительный нерв является источником патологической импульсации, в том числе и болевой, в-третьих, — из него выходят центрифугальные (центробежные) влияния на ткань. Доказано, в частности, что через чувствительные нервы из аксоплазмы в ткань поступает субстанция Р, которая влияет на метаболизм и микроциркуляцию,О значении нервных центров в развитии дистрофии свидетельствуют опыты А.Д. Сперанского с избирательным повреждением центров гипоталамуса. Результатом этого является образование трофических язв в различных органах на периферии.Роль эфферентных нервов в дистрофии заключается в том, что прекращается или извращается их функция (двигательная, секреторная). Прекращаются импульсная активность, синтез медиаторов (адреналина, серотонина, ацетилхолина и т. д.), изменяются синтез и аксональный транспорт нейротрофинов.При развитии нейрогенной дистрофии в клетках нарушаются процессы транскрипции и трансляции, синтез ферментов, уменьшается выход макроэргов, обмен приобретает более упрощенный характер. Подвергаются изменениям транспортные функции мембран клеток. Орган с нарушенной иннервацией может стать источником аугоантигенов. Процесс усложняется тем, что к сугубо ней-ротрофическим изменениям добавляются нарушения крово- и лимфообращения (микроциркуляция) с развитием гипоксии.Таким образом, нейрогенная дистрофия — это сложный многофакториальный процесс, который начинается с того, что нервная система перестает адекватно влиять на обмен веществ в тканях, и, как следствие, возникают сложные нарушения метаболизма, структуры и функции (схема 37).

Источник: http://sunmuseum.ru/patofiziologiya/1705-nervnaya-trofika-i-distroficheskiy-process.html

Medic-studio
Добавить комментарий